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Abstract—Artificial Intelligence (AI) and Machine Learning
(ML) are pervasive in the current computer science landscape.
Yet, there still exists a lack of software engineering experience
and best practices in this field. One such best practice, static code
analysis, can be used to find code smells, i.e., (potential) defects
in the source code, refactoring opportunities, and violations of
common coding standards. Our research set out to discover the
most prevalent code smells in ML projects. We gathered a dataset
of 74 open-source ML projects, installed their dependencies and
ran Pylint on them. This resulted in a top 20 of all detected
code smells, per category. Manual analysis of these smells
mainly showed that code duplication is widespread and that the
PEP8 convention for identifier naming style may not always be
applicable to ML code due to its resemblance with mathematical
notation. More interestingly, however, we found several major
obstructions to the maintainability and reproducibility of ML
projects, primarily related to the dependency management of
Python projects. We also found that Pylint cannot reliably check
for correct usage of imported dependencies, including prominent
ML libraries such as PyTorch.

Index Terms—Artificial Intelligence, Machine Learning, static
code analysis, code smells, Python, dependency management.

I. INTRODUCTION

Artificial Intelligence (AI) and Machine Learning (ML)
are pervasive in the current landscape of computer science.
Companies such as Facebook, Google, Nvidia and ING are
making use of AI and ML for a plethora of tasks that
are difficult (if not impossible) to describe using traditional
Software Engineering (SE) [1, 2, 3, 4]. Examples include facial
recognition & recomposition, natural language processing,
real-time video transformation, detection of medical anomalies
and intercepting fraudulent financial transactions.

Yet, as Sculley et al. [2] wrote in their 2015 paper on the
hidden technical debt in ML systems at Google, “only a small
fraction of real-world ML systems is composed of the ML
code. (...) The required surrounding infrastructure is vast and
complex.” This is also in part what leads Menzies [5] to predict
that the future of software will be a rich and powerful mix of
ideas from both SE and AI. Menzies also advocates for more
SE experience in the field of AI and ML, stating that poor
SE leads to poor AI while better SE leads to better AI [5].
The data scientists that write AI / ML code often come from
non-SE backgrounds where SE best practices are unknown [6].

One such SE best practice is the practice of static code
analysis to find (potential) defects in the source code, refactor-
ing opportunities and violations of common coding standards,

which we amalgamate into ‘code smells’ for the rest of this
paper. Research has shown that the attributes of quality most
affected by code smells are maintainability, understandability
and complexity, and that early detection of code smells reduces
the cost of maintenance [7].

With a focus on the maintainability and reproducibility of
ML projects, the goal of our research is therefore to apply
static code analysis to applications of ML, in an attempt to
uncover the frequency of code smells in these projects and
list the most prevalent code smells. Thus, we formulate the
following research question: What are the most prevalent code
smells in Machine Learning code?

The main contributions of this paper are:
• An empirical study on the prevalence of code smells in

74 Python ML projects.
• A dataset of 74 ML projects and an open-source tool to

perform simultaneous static code analysis on all of these
projects.

II. RELATED WORK

Several studies have investigated linting and static code
analysis of non-ML projects [8, 9, 10, 11]. Tómasdóttir et al.
[8] researched why JavaScript (JS) developers use linters and
how they tend to configure them. They found that maintaining
code consistency, preventing errors, saving discussion time
and avoiding complex code were among the top reasons
why JS developers use linters. They also found that JS
developers commonly stick with already existing preset linting
configurations. Vassallo et al. [12] found a similar result;
among other results, they found that developers are often
unwilling to configure automatic static analysis tools (ASATs)
and emphasise “the necessity to improve existing strategies
for the selection and prioritisation of ASATs warnings that
are shown to developers.”

Within the Python ecosystem, Chen et al. [11] investigated
the detection and prevalence of code smells in 106 Python
projects with the most stars on GitHub. They found that long
parameter lists and long methods were more prevalent than
other code smells. Omari and Martinez [9] used Pylint to
analyse the code quality of a dataset of large Python projects.
Furthermore, Bafatakis et al. [10] used Pylint to investigate the
Python coding style compliance of StackOverflow answers.

Within the Machine Learning ecosystem, we only found
one paper by Simmons et al. [6] that performed static code
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analysis on a large dataset of Data Science (DS) projects. They
also analysed non-DS projects with the goal of comparing
the code quality and coding standard conformance of (open-
source) DS projects versus non-DS projects, using Pylint in
its default configuration as a metric. They sourced their DS
projects from Biswas et al. [13], who in 2019 published a
dataset of 1558 “mature Github projects that develop Python
software for Data Science tasks.”. Aside from applications of
ML, it also includes ML libraries and tools.

Our study differs from [6] in that we do not compare against
non-DS projects and in that we do not solely focus on the
adherence to coding standards as [6] does. Our primary focus
lies more on investigating obstructions to the maintainability
and reproducibility of ML projects, which includes coding
standards violations, but also entails recognising refactoring
opportunities and other code smells [7]. Moreover, we solely
focus on applications of ML, and leave ML libraries and tools
out of scope. We argue that the underlying nature of ML
libraries and tools is very different from ML applications, and
thus different results are expected when studied separately.

Furthermore, Simmons et al. [6] simplified the installation
of the projects’ dependencies by using findimports1 to
resolve all imports used in the projects, instead of relying
on what projects’ authors defined in their repositories, noting
that “it was impractical to reliably determine and install
dependencies for the projects analysed.” However, if there is
an inherent difficulty in resolving these dependencies within
Python projects, then that is in itself an obstruction to the
reproducibility and maintainability of these projects. Hence,
we investigate this in our study.

III. METHODOLOGY

For this paper, we performed an empirical study on the
prevalence of code smells in ML code. We collected a dataset
of 74 ML projects and implemented a tool to set these projects
up with their dependencies in order to replicate their execution
environment. It then runs Pylint with its default configuration
on all projects in the dataset, collecting and counting the
detected code smells. The tool and dataset are both open-
source and can be found on GitLab2.

Our empirical study follows the methodology illustrated in
Figure 1. It comprises three main steps, namely: A) project
selection, B) setting up the codebases, and C) static analysis.

A. Project Selection

In total, our collected dataset comprises 74 ML projects;
32 projects come from finished Kaggle competitions, 38 from
paperswithcode.com (of which 25 projects were from the
Google-affiliated DeepMind), and 4 from reproducedpapers.
org. It includes projects from academic papers, (student) repro-
ductions, prize money awarding Kaggle competitions, as well
as industry players such as Facebook, Nvidia and DeepMind.
The dataset defines a list of Git repository URLs and allows for
customising the dependencies of particular projects, when they

1https://pypi.org/project/findimports/
2https://gitlab.com/bvobart/python-ml-analysis

have not been properly defined in their respective repository.
We elaborate on a number of characteristics of our dataset
in Section III-A1, but first, we explain how we collected the
projects in the dataset and what guidelines were used for doing
so.

We aim for this dataset to be a systematically gathered set
of projects, representative of the current, real-world state of
ML and AI projects. To this end, we have created a set of
guidelines for the inclusion of projects in the dataset, which
can be found below. Each project included in the dataset. . .

1) . . . must be hosted in an open-source Git repository.
2) . . . must be written in Python 3.
3) . . . must contain pure Python code and does not consist

purely of Jupyter Notebooks. More specifically, a project
should contain either a) at least 200 lines of pure Python
code, even if the rest of the code is embedded in Jupyter
Notebooks, or b) more lines of pure Python code than
there are lines of Python code in all Jupyter notebooks
of that project.

4) . . . must implement an ML or AI model and may not be
a library or tool for use in ML projects.

5) . . . must be considered ‘deliverable’, i.e., either a) the
project is part of or accompanies a published aca-
demic paper, or b) the project has been submitted to
paperswithcode.com, reproducedpapers.org or a Kaggle
competition (which has finished and declared the winners
at the time of considering the project).

The first guideline limits our scope to open-source projects,
as these are openly available to download and analyse.

The second and third guideline stem from a technical
limitations, as Pylint only supports Python 3 and is only able
to analyse pure Python files. Jupyter Notebooks are essentially
JSON files, containing ‘cells’ with code in Markdown, Python,
Julia, or a small selection of other different languages. While
it is technically possible to convert the Python code embedded
in these notebooks to pure Python files using a tool such
as nbconvert, the produced code has a slightly different
style than general Python modules, which invalidates
certain Pylint rules. For example, the Pylint messages
pointlesss-statement, expression-not-assigned
and wrong-import-statement produce false positives in
notebook-style code. Due to the lack of direct Pylint support
for Jupyter Notebooks and since we do not want to selectively
disable Pylint rules for notebook-extracted code as opposed to
pure Python code, we decided to exclude projects that purely
contain Jupyter Notebooks from our dataset. The minimum
of 200 lines of pure Python code in the presence of larger
Jupyter Notebooks was chosen such that this code is likely
not to be purely utility code, but also contain part of the ML
code.

The fourth guideline embodies that we are interested in
analysing applications of ML rather than libraries used in their
development, such as tensorflow, pandas, or sklearn.

The fifth and final guideline focuses on avoiding toy
projects, unfinished projects, or projects still under develop-
ment.
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Fig. 1. Methodology Diagram.

1) Dataset characteristics: We measured several general
characteristics of every project, which can be found in Table I.
The 74 projects in the dataset contain a total of 3156 pure
Python files, amounting to 511.018 lines of Python code,
including empty lines. The median project has 17 pure Python
files with 2848.5 lines of code, resulting in an average of 157.3
lines of Python code per file. The smallest project contained
a single file with 58 lines of Python, while the largest project
had 78572 lines of Python code across 229 files. This project
was found to be embedding the code of several dependencies
in its repository, multiple times.

B. Setting up the codebases

In this step, performed by our analysis tool, for each project,
we clone the latest version of the project’s Git repository,
create a virtual environment in it, ensure that there exists a
file that specifies any necessary dependencies and then install
those dependencies into the virtual environment. These need
to be installed, such that our static analysis tool of choice is
able to check whether imports resolve correctly and whether
the imported libraries are used correctly. This is particularly
interesting in the case of ML, as Sculley et al. [2] noted
that ML projects have a high degree of glue code and so
make extensive use of libraries. In total, the folder containing
all of the 74 cloned projects from our dataset along with
the accompanying virtual environments with their installed
dependencies, amounts to 131 GiB.

Python projects can specify and install their dependencies
in a variety of ways. The most common way to install a
Python dependency is to use pip, the package manager that is
installed alongside Python. It is common convention to specify
a Python project’s list of dependencies in a requirements file
called requirements.txt, which is conventionally placed
at the root of the project’s source code repository. It is also
possible to specify a setup.py file which allows the project
to be built into a Python package, ready to be published to
PyPI, pip’s default package index. pip can be configured to
use other package indexes, but by default it can only install
packages from PyPI, or directly from source through a Git
repository URL or a local folder with a setup.py.

However, there are also other package managers / de-
pendency management solutions such as Conda, Poetry,
pip-tools and Pipenv, with the latter being directly endorsed
in Python’s Packaging User Guide [14]. These tools each have
their own way of specifying dependencies and – especially
in Conda’s case – may use additional package indexes to

PyPI, which makes resolving these dependencies difficult. It is
possible to use pip freeze > requirements.txt, which
collects all Python packages and their exact versions installed
in the current Python environment (disregarding by which
means these packages were installed) and outputs them to a
requirements.txt file. This approach is flawed though, as
we explain in Section V-B.

Our analysis tool currently only supports installing de-
pendencies with pip and expects a requirements.txt
or setup.py file in their conventional location. The
dataset also supports specifying a custom path to a
requirements.txt file, or alternatively, the contents of a
custom requirements.txt file for a project in the dataset.
It is also possible to specify extra requirements that need to
be installed after installing the dependencies from the require-
ments file. This is necessary for, e.g., Nvidia’s Apex library,
which depends on PyTorch; when trying to run pip install
on a requirements file containing both PyTorch and Apex’s Git
repository URL (no matter the order), the installation of Apex
fails because PyTorch is not yet installed. Only for projects
that do not have a requirements.txt file, nor a manually
defined one, our analysis tool uses pipreqs3 to generate a
requirements.txt file based on the libraries imported in
the code.

Our analysis tool currently does not support using Conda,
Poetry or Pipenv for resolving and installing dependencies.
We therefore had to exclude one project that used Poetry
and two projects that used Conda and solely specified a
Conda environment.yml file, but no requirements.txt
or setup.py. No projects that we came across were using
Pipenv.

C. Static Analysis

This step is also performed by our analysis tool and
concerns running the static code analysis tool Pylint (version
2.6.0) in its default configuration on all pure Python files in
each project (but not on any of the dependencies). We choose
Pylint for static code analysis as it is widely used and widely
accepted in the Python community, as well as being highly
configurable [6, 10]. It is also well integrated into IDEs such
as PyCharm and VS Code. Furthermore, Bafatakis et al. [10]
used it to measure coding style compliance in StackOverflow
answers, Omari and Martinez [9] used it as a metric for the
code quality of open-source Python projects, and Simmons

3https://github.com/bndr/pipreqs
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TABLE I
CHARACTERISTICS OF OUR DATASET OF 74 ML PROJECTS

Characteristic Min Q1 Median Q3 Max Mean Std Dev.

Number of pure Python files 1 8 17 36 730 43 95
Number of Jupyter Notebook files 0 0 0 1 52 3 8
Lines of Python code 58 1449 2849 5243 78572 6906 13568
Lines of Jupyter Notebook Python 0 0 0 197 43387 1008 5115
Avg. lines of Python code per Python file 58 108 157 214 1151 193 155
Avg. lines of Jupyter Notebook Python per Jupyter Notebook file 12 73 129 223 1610 256 335

et al. [6] used it in their code quality comparison between DS
and non-DS Python projects.

Pylint provides an extensive set of messages, not only for
stylistic issues, but also for issues regarding programming con-
ventions, possible refactorings and other logical code smells.
While Pylint is very configurable, we chose to use Pylint’s
default configuration as it reflects the community standards,
similar to Simmons et al. [6].

The code smells that Pylint reports are each identified by
a symbol, such as bad-indentation or import-error,
which is also how we refer to specific Pylint messages in
this paper. Furthermore, these messages are divided into five
categories (message types), which we describe below. The
italic text is how Pylint describes the category.

• Convention – for programming standard violation –
Messages in this category show violations of primarily
code style conventions, as well as documentation con-
ventions and Pythonic programming conventions.

• Refactor – for bad code smell – Messages in this cate-
gory indicate that the smelly code should be refactored.

• Warning – for Python specific problems – This category
includes many generic and Python-specific linting mes-
sages.

• Error – for probable bugs in the code – Messages in
this category indicate problems in the code that are very
likely to cause run-time problems.

• Fatal – if an error occurred which prevented Pylint from
doing further processing.

Cloning and installing all projects, even though this is per-
formed automatically by the tool, is the most time-consuming
part of the analysis – it takes roughly three hours. With
all projects already cloned and their dependencies already
installed, the analysis of all 74 projects took 8m 53s using
12 threads on an Intel® Core™ i7-8750H processor.

Eight projects contained code that caused Pylint to crash
during analysis, so we excluded these from the 82 projects we
originally had in the dataset, bringing the total to 74. Several
issues have been filed about this, including one by this paper’s
first author4. This bug has since been fixed.

IV. RESULTS

Applying our methodology, we collected, installed, and
analysed 74 ML projects. In this section, we present our results
and answer to the research question posed in the introduction:

• RQ – What are the most prevalent code smells in Machine
Learning code?

4https://github.com/PyCQA/pylint/issues/3986

TABLE II
DISTRIBUTION OF PYLINT MESSAGES PER CATEGORY PER PROJECT.

Category Min Q1 Median Q3 Max Mean Std Dev.

Convention 2 57 226 799 9501 708 1361
Refactor 0 26 49 140 2437 183 433
Warning 11 74 356 824 14263 814 1826
Error 1 18 56 125 1696 129 234
Fatal 0 0 0 0 0 0 0

TABLE III
TOP 10 CODE SMELLS OVERALL AS DETECTED BY PYLINT.

# Smell Frequency

1 unused-wildcard-import 26307
2 bad-indentation 19921
3 invalid-name 19905
4 line-too-long 10321
5 missing-function-docstring 6444
6 no-member 5860
7 duplicate-code 4649
8 trailing-whitespace 4477
9 redefined-outer-name 2548

10 missing-module-docstring 2504

To answer this, we first analysed the distribution of the
amount of code smells per Pylint category per project, of
which the characteristics can be found in Table II. The table
shows the minimum, maximum, mean and median number
of messages reported by Pylint for each category, as well as
the 25th percentile (Q1), 75th percentile (Q3), and standard
deviation (Std. Dev.). We use the median as the main measure
of central tendency.

Our results show that Pylint messages in the Warning
category are the most prevalent – the median project has 356
warnings – closely followed by messages in the Convention
category with 226 messages for the median project. Messages
in the Refactor and Error categories are less prevalent; re-
spectively 49 and 56 such messages for the median project.
However, especially given the Error category is meant for
messages that show “probable bugs”, this is an interesting
observation. Even more interesting, there was no project for
which Pylint reported no error messages.

As a more direct answer to this research question, we mea-
sured across all projects in our dataset what the top 20 code
smells per category are that Pylint reported, see Table IV. The
top 10 messages that Pylint reported, disregarding category,
are in Table III.

Convention – In this category we found that invalid naming,
missing documentation (missing-function-docstring,
missing-module-docstring,
missing-class-docstring and missing-docstring)
and improper organisation of imports
(wrong-import-position, wrong-import-order,

4
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TABLE IV
TOP 20 MESSAGES PER CATEGORY REPORTED BY PYLINT ALONG WITH HOW OFTEN THEY WERE COUNTED ACROSS ALL PROJECTS.

Convention Refactor Warning Error
Symbol Count Symbol Count Symbol Count Symbol Count

1 invalid-name 19905 duplicate-code 4649 unused-wildcard-import 26307 no-member 5860
2 line-too-long 10321 too-many-arguments 2158 bad-indentation 19921 import-error 1750
3 missing-function-docstring 6444 super-with-arguments 1802 redefined-outer-name 2548 undefined-variable 471
4 trailing-whitespace 4477 too-many-locals 1456 unused-import 2321 not-callable 397
5 missing-module-docstring 2504 too-many-instance-attributes 658 arguments-differ 1678 no-name-in-module 326
6 wrong-import-position 2286 no-else-return 509 unused-variable 986 no-value-for-parameter 168
7 missing-class-docstring 2060 too-few-public-methods 438 attribute-defined-outside-init 962 function-redefined 100
8 wrong-import-order 1750 no-self-use 422 unused-argument 902 unsubscriptable-object 100
9 ungrouped-imports 367 useless-object-inheritance 351 abstract-method 841 bad-option-value 94
10 import-outside-toplevel 285 too-many-statements 265 redefined-builtin 536 unexpected-keyword-arg 84
11 consider-using-enumerate 256 too-many-branches 218 dangerous-default-value 447 relative-beyond-top-level 68
12 missing-docstring 246 cyclic-import 108 reimported 322 assignment-from-no-return 27
13 superfluous-parens 244 inconsistent-return-statements 71 wildcard-import 297 bad-super-call 21
14 missing-final-newline 236 unnecessary-comprehension 48 logging-format-interpolation 288 redundant-keyword-arg 19
15 multiple-statements 218 chained-comparison 46 pointless-statement 253 too-many-function-args 18
16 trailing-newlines 176 consider-using-in 45 fixme 247 invalid-unary-operand-type 17
17 bad-whitespace 166 simplifiable-if-expression 34 protected-access 223 no-self-argument 9
18 unidiomatic-typecheck 78 literal-comparison 30 logging-fstring-interpolation 110 misplaced-bare-raise 9
19 singleton-comparison 69 too-many-nested-blocks 26 f-string-without-interpolation 105 no-method-argument 6
20 multiple-imports 53 no-else-raise 24 pointless-string-statement 101 access-member-before-definition 6

ungrouped-imports, import-outside-toplevel and
multiple-imports) were the most commonly recognised
code smells in the Convention category.

Refactor – The most commonly recognised opportu-
nities for refactoring pertained to duplicate code (4649),
using too many arguments when defining a function or
method (2158, too-many-arguments), and using an old
style for calling super in the constructor of an inherit-
ing class (1802, super-with-arguments), instead of us-
ing the Python 3 style where no arguments to super are
necessary. It also shows that functions and classes are of-
ten too complex; Pylint reports 1456 functions that use too
many local variables (too-many-locals), 265 that are too
long (too-many-statements) and 218 that have too many
branches, as well as 658 classes that have too many attributes
on them (too-many-instance-attributes).

Warning – The most reported Warning messages,
by far, are unused-wildcard-import (26307) and
bad-indentation (19921). Code smells relating to import
management, as already indicated in the Convention category,
are also reflected in the Warning category with 26307 counts
of unused wildcard imports, 2321 counts of unused imports,
322 counts of libraries that were imported multiple times
in the same file (reimported) and 297 counts of wildcard
imports. Aside from unused imports, unused variables (986)
and unused arguments (902) are also common. Having
variables that redefine (shadow) function or variable names
from an outer scope (redefined-outer-scope) is also
common with 2548 recognised cases, as is redefining Python’s
built-in global names (536, redefined-builtin).

Error – Finally, in the Error category, with 5860 counts, the
no-member message is the most prevalent, warning about the
usage of non-existent attributes and methods on class instances
and non-existent functions in Python modules. Import errors
are the second most common with 1750 counts (i.e. on
average 23.6 import errors per project), which are reported
when a module (whether an external library or a module
from a local file) contains imports that Pylint cannot resolve.
The 326 no-name-in-module messages are also related to

these import problems, as they are emitted upon using a
from X import Y style import, where X is resolved (so no
import error is emitted), but Y is not found. Furthermore, the
use of undefined variables and attempting to call uncallable
objects are also prevalent.

V. IMPLICATIONS

In this section, we discuss the implications of our results
for ML developers. We start by elaborating upon the code
smells that we have found to be most prevalent and continue
with a discussion of problems regarding dependency manage-
ment that we encountered while performing this research. We
also argue how these problems affect the maintainability and
reproducibility of the analysed ML projects.

A. Explaining the most prevalent code smells

This section aims at providing an explanation for the
prevalence of the most common code smells in our dataset
of ML projects by investigating their occurrences.

Error – Most interestingly, we found that there were zero
projects that had zero messages in the Error category. Only
the geomancer project in the DeepMind research repository5

had one error, namely a true positive no-name-in-module
error message in the project’s test file.

We also found that no-member and import-error are
the most reported code smells in this category. Upon manual
inspection of these messages in several projects, we noticed
that import errors have two primary causes, namely:
• Bad specification of requirements – Using the
kaggle-kuzushiji-recognition-2019 project as
an example, we noticed that it was missing at least four
dependencies in its (otherwise well-defined) requirements
file. Imports of these missing dependencies were primarily
found in the code of a dependency that the project’s
authors had copied into their repository for some slight
customisations, but were also found in other scripts in the
repository.

5https://github.com/deepmind/deepmind-research
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• Pylint producing false positives on local imports – Taking
the navigan6 project as an example, even though we
manually fixed the import errors relating to badly specified
requirements, there were 28 errors remaining. These errors
come from unresolved imports from local modules, i.e.,
Python files in the repository. In Python, a local module
utils.py can be imported from other modules in the same
directory using import utils and it is recommended (but
not necessary) to add an __init__.py file to that directory
to indicate that it is a Python package [15]. However,
as a GitHub issue reports7, Pylint produces false positive
import errors on local imports, but strangely not when the
__init__.py file is not present.

As for no-member errors, in the
kaggle-kuzushiji-recognition-2019 project – which
has 327 of them – these were primarily caused by false
positives from Pylint on the majority of – if not all – usages
of the torch library (i.e. PyTorch), including those of basic
PyTorch functions like torch.as_tensor, torch.tensor
and torch.max. The project with the most no-member
errors, RSNA-STR-Pulmonary-Embolism-Detection
(1549), showed the same trend, as did DL-unet and several
other projects that we investigated. This is a known issue that
has been reported to Pylint’s Github repository8 of which the
essence goes back as far as 2013 with a similar problem in
the use of NumPy9. The reason that is stated in these issues,
is that Pylint has trouble extracting the members and type
information of libraries that are backed by bindings with the
C programming language.

Pylint cannot reliably check for correct uses of import
statements; both local imports, as well as imports from C-
backed libraries such as PyTorch, suffer from a high rate
of false positives.

This is especially concerning in the context of ML, as the
majority of ML libraries are backed by C (to make them
performant). The fix that the Pylint developers propose in
the relevant GitHub issues all entail (partially) disabling the
no-member rule, implying that Pylint cannot reliably check
for correct uses of C-backed libraries. This is additionally
concerning in the context of ML, as it has a high degree of
glue code, i.e. code that is written to coerce data in and out
of general-purpose libraries [2].

Additionally, the fact that Pylint fails to reliably analyse the
usage of prominent ML libraries, provides a major obstacle to
the adoption of Continuous Integration (CI) in the develop-
ment environment of ML systems. If a static code analysis
tool produces too many false positives, it will be noisy and
counterproductive [12]. Thus, other important true positives
may be overlooked.

6https://github.com/yandex-research/navigan
7https://github.com/PyCQA/pylint/issues/3984
8https://github.com/PyCQA/pylint/issues/{3510, 2708, 2067}.
9https://github.com/PyCQA/pylint/issues/58.

Additionally, the fact that Pylint fails to reliably analyse
whether prominent ML libraries are used correctly, provides
a major obstacle to the adoption of Continuous Integra-
tion (CI) in the development environment of ML systems.

Warning – In this category, we found that one
project (kaggle_rsna2019_3rd_solution) was responsi-
ble for 13917 of all 26307 unused-wildcard-import
messages, with 53 wildcard-import messages. Since
unused-wildcard-import are emitted per unused function
imported with a wildcard import, this means that there were
on average 263 unused imports per wildcard import in this
project. Notably, most of these messages were also (contained
in) instances of duplicate code. Such unused wildcard imports
pollute a module’s namespace with the names of all imported
functions, meaning there is a greater chance of (accidentally)
redefining an outer name. Additionally, wildcard imports may
also have unintended side-effects that can be very difficult to
debug.

The tendency towards using wildcard imports may stem
from the prototypical and experimental nature of ML projects,
combined with the fact that it is simply easier for the developer
to import everything from a library and use whatever they
need, rather than import functions individually. Dead exper-
imental codepaths as found by Sculley et al. [2] of which
the imports still remain, can also be a cause of bad import
management.

As for the many bad-indentation messages, these were
dominated primarily by DeepMind projects that were using a
different convention for indentation width, namely two spaces
instead of four. This is not surprising since indentation width
is a preference, where the PEP8 style guide10 prescribes four
spaces, but others such as Google’s TensorFlow style guide11

prescribe two spaces.
Refactor – We found that duplicate-code is the most

commonly reported refactoring opportunity. Having manually
inspected a random subset of these messages and where they
occur, we have noticed that these are primarily caused by
ML developers having multiple permutations of similar ML
models to perform the same task. Each model (experimental
codepath) then uses a slightly different underlying algorithm
or slightly different parameters and are each defined in their
own file, likely in an attempt to find the best performing one.
Yet instead of identifying the commonalities between these
different models and abstracting them into modules that can
be reused across their codebase, ML developers seem to prefer
simply copy-pasting the files. However, more research into
code reuse and duplication in ML code is required to truly
understand this phenomenon and how it can be prevented.

Code duplication is common in ML, but calls for more
extensive research to truly understand to what extent and
for what reasons this occurs, and how it can be avoided.

10https://www.python.org/dev/peps/pep-0008/
11https://www.tensorflow.org/community/contribute/code_style
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Regarding the high prevalence of the
too-many-arguments and too-many-locals messages,
it is congruent with previous work which shows that data
science projects contain significantly more instances of
these than traditional software projects [6]. Simmons et al.
[6] also notes that these messages are related: function
arguments namely also count as local function variables. By
default, a too-many-arguments message is emitted when
a function or method takes more than five arguments, while
too-many-locals is emitted when a function or method
contains more than 15 local variables. A possible cause for
their prevalence, as Simmons et al. [6] note, are “models
with multiple hyperparameters that are either hard-coded as
variables in the function definition or passed to the function
as individual parameters rather than being stored in a
configuration object.”

Convention – While line length violations stem primarily
from developer preference, invalid and improper naming is a
problem not exclusive to Python [7]. Pylint by default emits
a invalid-name message when it finds names that do not
comply to PEP8, i.e. are improperly capitalised or less than
three characters long (except in the case of inline variables).
Indeed, shorter identifier names do take longer to comprehend
than whole words [16], but Simmons et al. [6] aptly notes that
this may not necessarily be the case in DS and ML code due to
its heavily mathematical background. Thus, ML practitioners
may find it easier to comprehend the details of a piece of ML
code written so that it resembles the notation of the underlying
mathematical model, including the names of the identifiers.
Future research on this subject will have to show how this
affects the readability of ML code.

The PEP8 convention for identifier naming style may not
always be applicable in ML code due to its resemblance
with mathematical notation. Future research is required to
investigate how this affects the readability of ML code.

B. Problems installing project dependencies

Setting up the projects’ codebases as detailed in Section
III-B was not a trivial task. While 42 out of 74 projects
did have a requirements file in their repository that installed
without a hitch out of the box, there were 32 projects where a
requirements.txt had to be generated or had to manually
be created from inspecting the repository or manually modified
from what was already in the repository. Furthermore, there
were 13 projects that required installing extra dependencies
after installing those in the requirements file. One of these
projects had a valid requirements file – and specified the extra
dependencies in their ReadMe – but the 12 others did not.

As for the projects for which a requirements file had to be
manually created or modified, we made a few observations as
to why this was needed. First, some projects did not contain
a requirements file at all, but did specify instructions in the
ReadMe, e.g., the yolact_edge project.

Secondly, some projects had simply made a small mistake
in their manual maintenance of the requirements file, as was

the case with the navigan project. The project authors fixed
the mistake less than a day after we filed an issue on their
GitHub12 about it.

Thirdly, some projects were relying on custom Docker
containers for their runtime environment. These projects,
e.g. kaggle-imaterialist, maintain a Dockerfile in their
repository (sometimes with an additional requirements file) in
which the project’s dependencies are installed, often without
specifying exact dependency versions.

Finally, and most commonly (especially with the Kaggle
projects), projects would contain a requirements.txt file
that was likely the result of running pip freeze – a shell
command that lists all the packages installed in the current
Python environment, including their respective dependencies,
along with their exact versions. However, the are three prob-
lems with this approach:
• Difficult to maintain – Since pip freeze lists all direct,

indirect, runtime and development dependencies, without
distinction, in alphabetical order, we conjecture that it is
difficult for maintainers to assess whether a certain depen-
dency can safely be upgraded without breaking their code
or breaking any of their dependencies.

• May result in unresolvable dependencies – The resulting
requirements file may contain dependencies sourced from
different dependency management tools and package in-
dexes. These dependencies may have slightly different pack-
age names across package indexes or have only published
certain versions to e.g. Conda’s package index, but not to
PyPI. There were also projects that depended on pre-release
versions of certain libraries that are no longer available on
PyPI (e.g., older nightly versions of Tensorflow packages).

• May include unrelated dependencies – Especially if the
user is not installing their dependencies into a virtual
environment, then the resulting requirements file may also
include unnecessary, unrelated (and potentially unresolv-
able) Python dependencies, such as those used by their
operating system or those used in other projects. For ex-
ample, the side_effects_penalties in the DeepMind
research repository depends on youtube-dl (even though
the project has nothing to do with videos), as well as
some dependencies from the operating system level such
as python-apt, python-debian and ufw. The inclusion
of the latter dependencies directly indicates that the project
author was not using a virtual environment, but was instead
using sudo pip install to install all of their Python
dependencies.

We have found serious issues with the specification of
dependencies that present a major threat to the repro-
ducibility and maintainability of Python ML projects.
Further research needs to be undertaken to help ML
practitioners avoid issues in the dependency management
of their projects.

12https://github.com/yandex-research/navigan/issues/1
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VI. THREATS TO VALIDITY

A. Validity of the dataset

Our dataset may not yet be fully representative of the real-
world state of ML code, as it currently only contains open-
source ML projects, Therefore, in future research, we want
to collect a dataset of closed-source ML projects from the
industry, such as ING’s AI-driven FinTech industry. We will
use this both to compare the prevalence of code smells in
these closed-source industry projects with that of open-source
projects as presented in this paper, as well as to make our
dataset more representative of the real-world state of ML and
AI projects. We will also explore adding projects from the
dataset published by Biswas et al. [13].

Furthermore, we currently do not perform any analysis on
the code quality of Jupyter Notebooks, even though they are
very popular and have emerged as a de facto standard for
data scientists [17]. This was deliberate, as Pylint currently
does not support directly analysing the Python code in Jupyter
Notebook files and we wanted to avoid applying double
standards to pure Python code and notebook Python code by
extracting the notebook code into pure Python files. However,
given their popularity, we do intend to perform future research
on the code quality and linting of Jupyter Notebook code.

B. Validity of Pylint

Due to its dynamically typed nature, linting Python code
is notoriously difficult [6, 11]. It is therefore no surprise
that Pylint contains bugs and limitations that cause false
positives and false negatives. Pylint’s issue tracker on GitHub
also reports 165 open and 501 closed issues regarding false
positives13 as of January 19th 2021. We have also noticed
some of these shortcomings for ourselves during this research,
as we have discussed in Section V-A. We mitigate this threat
by manually checking a subset of projects to analyse potential
false positives.

VII. CONCLUSION

In this study we investigated the prevalence of code smells
in ML projects. We gathered a dataset of 74 ML projects,
ran the static analysis tool Pylint on them and collected
the distribution of Pylint messages per category per project
(Table II), the top 10 code smells in these projects overall
(Table III), and the top 20 code smells per category (Table IV).

Moreover, by performing a manual analysis of a subset
of the detected smells, we have found that code duplication
is common in ML, but does require further research to
understand to what extent this occurs and how it can be
avoided. We also found that the PEP8 convention for identifier
naming style may not always be applicable in ML code due
to its resemblance with mathematical notation. This calls for
additional research on how it affects the readability of ML
code.

Most importantly, however, we have found serious issues
with the specification of dependencies that present a major

13See https://github.com/PyCQA/pylint/issues?q=is%3Aissue+false+
positive

threat to the reproducibility and maintainability of Python ML
projects. Furthermore, we found that Pylint produces a high
rate of false positives on import statements and thus cannot
reliably check for correct usage of imported dependencies,
including prominent ML libraries such as PyTorch. Both of
these problems also provide a major obstacle to the adoption
of CI in ML systems. Further research needs to be undertaken
to help ML practitioners avoid issues in the dependency
management of their projects.
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