
Do Energy-oriented Changes Hinder
Maintainability?

Luis Cruz∗, Rui Abreu†, John Grundy‡, Li Li‡ and Xin Xia‡
∗ INESC-TEC, University of Porto, Porto, Portugal

Email: luiscruz@fe.up.pt
† INESC-ID, University of Lisbon, Lisbon, Portugal

Email: rui@computer.org
‡ Faculty of Information Technology, Monash University, Melbourne, Australia

Email: {john.grundy, li.li, xin.xia}@monash.edu

Abstract—Energy efficiency is a crucial quality requirement
for mobile applications. However, improving energy efficiency is
far from trivial as developers lack the knowledge and tools to
aid in this activity. In this paper we study the impact of changes
to improve energy efficiency on the maintainability of Android
applications. Using a dataset containing 539 energy efficiency-
oriented commits, we measure maintainability – as computed
by the Software Improvement Group’s web-based source code
analysis service Better Code Hub (BCH) – before and after energy
efficiency-related code changes. Results show that in general
improving energy efficiency comes with a significant decrease
in maintainability. This is particularly evident in code changes
to accommodate the Power Save Mode and Wakelock Addition
energy patterns. In addition, we perform manual analysis to
assess how real examples of energy-oriented changes affect
maintainability. Our results help mobile app developers to 1)
avoid common maintainability issues when improving the energy
efficiency of their apps; and 2) adopt development processes to
build maintainable and energy-efficient code. We also support
researchers by identifying challenges in mobile app development
that still need to be addressed.

Index Terms—Energy Consumption, Software Maintenance,
Mobile Computing

I. INTRODUCTION

Modern mobile applications, popularly known as apps,
provide users with a number of features in multi-purpose
mobile computing devices – smartphones. The convenience of
using smartphones to pervasively accomplish important daily
tasks has a big limitation: smartphones have a limited battery
life. Apps that drain battery life of smartphones can ruin user
experience, and are likely to be uninstalled unless they offer
a key feature.

Thus, it is critically important that apps efficiently use the
battery of smartphones. However, many developers still lack
knowledge about best practices to deliver energy efficient mo-
bile applications [1], [2]. Important efforts have been carried
out to help developers ship energy efficient mobile apps [3].
Novel tools have been built to suggest energy improvements
to the codebases of mobile apps [4]–[7] and to help developers
measure the energy consumption of their apps [8]–[12].

Despite these efforts, improving the energy efficiency of
mobile applications is not a trivial task. It requires imple-
menting new features and refactoring existing ones [13], only
for the sake of better energy usage, i.e., predominantly a
non-functional rather than functional change. However, the
extent to which these changes affect the maintainability of the

mobile app software has not yet been studied. In this work,
we are interested in studying the trade-off between the energy
efficiency and the maintainability of mobile applications.

The International Standards on software quality
ISO/IEC 25010 define software maintainability as “the
degree of effectiveness and efficiency with which a
software product or system can be modified to improve
it, correct it or adapt it to changes in environment, and
in requirements” [14]. The standard defines five core sub-
characteristics of maintainability: modularity, reusability,
analyzability, modifiability, and testability. The Software
Improvement Group (SIG) has developed a web-based source
code analysis toolset Better Code Hub (BCH) [15] that maps
the ISO/IEC 25010 standard on maintainability into a set of
10 guidelines, such as write short units of code and write
code once, derived from static analysis [15]–[18]. The code
metrics used by the SIG model were empirically validated in
previous work [19]. We use this toolset in our work to provide
an assessment of maintainability in mobile app codebases.

Specifically, we want to explore whether there is a trade-
off between applying energy efficiency patterns and keeping
the maintainability of the apps, i.e., does improving energy
efficiency have a negative impact on code maintainability?
In this paper, we present the results of our analysis on the
maintainability using 539 energy commits harvested from open
source Android applications.

The key contributions of this work are:
• An empirical investigation of the impact of energy pat-

terns in code maintainability.
• A dataset of energy commits and respective impact on

maintainability.
• A software package with all scripts used in our experi-

ments and a dataset of energy commits with respective
impact on maintainability, for reproducibility. Available
here: https://figshare.com/s/989e5102ae6a8423654d.

Our empirical study finds evidence that energy efficiency-
oriented code changes have a negative impact on code main-
tainability. In particular, careful thinking is required to im-
plement the energy patterns Power Save Mode and Wakelock
Addition. Furthermore, we show that energy patterns are more
likely to require maintenance than regular code changes.

This paper is structured as follows. In Section II, we intro-
duce an example of an energy improvement from a real-world

https://figshare.com/s/989e5102ae6a8423654d


mobile application. Section III describes the methodology we
use to answer the research questions. We present the results
in Section IV and discuss their implications in Section V. In
section VI, we enumerate the threats to the validity of our
work. Section VII describes the differences between our work
and existing literature. Finally, in Section VIII we summarize
the main conclusions and elaborate on future work.

II. MOTIVATING EXAMPLE & RESEARCH QUESTIONS

Improving energy efficiency of apps revolves around chang-
ing their codebases. Previous work has studied existing energy
patterns for mobile applications [13]. It cataloged typical
coding practices developers adopt to address energy efficiency.
An example of an energy pattern is the Power Save Mode:
the app features a mode that can be activated upon low
battery and uses fewer resources while providing the minimum
functionality that is indispensable to the user.

An instance of this pattern can be found in the app Net-
Guard1 – an Android app that provides a firewall and monitors
network traffic across other apps.

To improve energy efficiency, NetGuard’s developers de-
cided to implement the pattern Power Save Mode [13]. The
following snippet presents the required code changes2:

public class SinkholeService extends VpnService {
private boolean powersaving = false;

// [snip]

public void handleMessage(Message msg) {
+ if (powersaving) return;¶

switch (msg.what) {
case MSG_PACKET:
log((Packet) msg.obj, msg.arg1, msg.arg2 > 0);

// [snip]
}

}

// [snip]

private BroadcastReceiver interactiveStateReceiver =
new BroadcastReceiver() {
@Override
public void onReceive(Context context, Intent intent) {

// [snip]
statsHandler.sendEmptyMessage(

- Util.isInteractive(this) ? STATS_START : STATS_STOP
+ Util.isInteractive(this) && !powersaving ?
+ STATS_START : STATS_STOP ·

);
}

};

// [snip]

+ private BroadcastReceiver powerSaveReceiver =
+ new BroadcastReceiver() { ¸
+ @Override
+ @TargetApi(Build.VERSION_CODES.LOLLIPOP) ¹
+ public void onReceive(Context context, Intent intent) {
+ Log.i(TAG, "Received " + intent);
+ Util.logExtras(intent);
+ PowerManager pm = getSystemService(
+ Context.POWER_SERVICE);
+ powersaving = pm.isPowerSaveMode();
+ Log.i(TAG, "Power saving=" + powersaving);
+ statsHandler.sendEmptyMessage(

1More information about the app NetGuard on Google Play app
store: https://play.google.com/store/apps/details?id=eu.faircode.netguard&hl=
en (Visited on July 26, 2019) .

2Commit taken from NetGuard project’s Github reposi-
tory, available at: https://github.com/M66B/NetGuard/commit/
2e70a038970d6efe9f74e5719e7648f91de30498 (Visited on July 26, 2019)

+ Util.isInteractive(this) && !powersaving ?
+ STATS_START : STATS_STOP º
+ );
+ };

// [snip]

@Override
public void onCreate() {
// [snip]

+ if (VERSION.SDK_INT >= VERSION_CODES.LOLLIPOP) { »¼
+ PowerManager pm = getSystemService(POWER_SERVICE);
+ powersaving = pm.isPowerSaveMode();
+ IntentFilter ifPower = new IntentFilter();
+ ifPower.addAction(ACTION_POWER_SAVE_MODE_CHANGED);
+ registerReceiver(powerSaveReceiver, ifPower);
+ }
// [snip]
}

// [snip]

@Override
public void onDestroy() {
// [snip]

+ if (VERSION.SDK_INT >= VERSION_CODES.LOLLIPOP) ½
+ unregisterReceiver(powerSaveReceiver); ¾
// [snip]
}

}

¶ Disable data logging methods to suppress output.
· Deactivate network speed statistics when Power Save

Mode is activated.
¸ An instance of BroadcastReceiver is created to

implement the handler of Power Save Mode events.
¹ A decorator is used to make sure Power Save Mode

changes are only applied to a compatible Android version.
º Network speed statistics have to be deactivated upon

different events. This is a duplicate of ·.
» Subscribe event of Power Save Mode activation.
¼½ A conditional statement is used to ascertain Power Save

Mode is only applied to a compatible Android version.
¾ Subscribe Power Save Mode event.
Although the concept of creating a Power Save Mode is

relatively simple, this example illustrates that a number of code
changes have to be made that have an adverse impact on code
maintainability. For instance, it requires adding duplicated
code and adding conditional statements to check the version
of Android, increasing cyclomatic complexity. This form of
coding goes against some of the guidelines for building
maintainable software [15].

We are concerned that, while improving energy efficiency,
developers are decreasing the maintainability of their projects,
and consequently increasing technical debt. In this work,
we use a dataset of energy efficiency-oriented changes to
measure the difference in maintainability incurred in Android
applications when those changes were applied. Therefore, in
this work, we want to answer the following research questions.

RQ1: What is the impact of making code changes to improve
energy efficiency on the maintainability of mobile apps?

Why: Energy efficiency often requires to change codebases and
even the features of a mobile application. If maintainability is
not addressed, these improvements may significantly increase
technical debt and require rework during the lifetime of the
project.

https://play.google.com/store/apps/details?id=eu.faircode.netguard&hl=en
https://play.google.com/store/apps/details?id=eu.faircode.netguard&hl=en
https://github.com/M66B/NetGuard/commit/2e70a038970d6efe9f74e5719e7648f91de30498
https://github.com/M66B/NetGuard/commit/2e70a038970d6efe9f74e5719e7648f91de30498


Better Code Hub
Maintainability

Combine
datasets

Energy
Commits

Baseline
Commits

Bao et al. 
(2015)

Moura et al. 
(2016)

Cruz et al. 
(2018)

Cruz et al. 
(2019)

Fig. 1. Methodology for data collection.

How: We analyze a combination of previous datasets with
539 energy-oriented commits. We compute the maintainability
score of these commits using the online tool BCH. We apply
the same approach to a dataset of regular commits to use as
baseline and compare results.

RQ2: Which energy efficiency-oriented code change patterns
are more likely to affect the maintainability of mobile apps?

Why: Some energy patterns might be more complex to imple-
ment than others. By understanding which patterns are more
likely to introduce maintainability issues, we bring awareness
to mobile app and mobile SDK developers of code changes
that require more attention.
How: We use the classification of developers activities made
in previous work [4], [13], [20], [21] to group energy-oriented
commits and analyze maintainability independently.

RQ3: What are typical maintainability issues introduced by
energy-oriented code changes?

Why: By using examples of typical maintainability issues in
real energy-oriented commits, practitioners and researchers
will have a more tangible concept of how energy efficiency
may hinder maintainability.
How: First, we select energy-oriented commits that yielded
low maintainability. Then, we manually inspect these commits
and discuss the potential issues entailed by energy efficiency
improvements.

III. METHODOLOGY
We use the approach illustrated in Fig. 1 to analyze how

energy commits affect the maintainability of Android applica-
tions. It comprises the following steps:

1) Combine the datasets from related work that classifies
the activities of developers addressing energy efficiency
in mobile apps [4], [13], [20], [21].

2) Collect regular commits from Android apps to be used
as baseline.

3) Compute the impact of energy-oriented commits on
maintainability, using BCH.

TABLE I
DATASETS THAT WERE COMBINED FROM PREVIOUS WORK.

Authors Ref. # Commits Platforms
Moura et al. (2015) [20] 2188 Android, iOS, non-mobile
Bao et al. (2016) [21] 468 Android
Cruz et al. (2018) [4] 59 Android
Cruz et al. (2019) [13] 431 Android, iOS

A. Dataset

Our work uses the data collected in four previous studies [4],
[13], [20], [21] to assess the impact of energy management-
oriented changes on the maintainability of Android software.
The datasets are summarized in Table I and explained below.

Moura et al. (2015) mined more than 2000 commits to
understand energy management activities in general-purpose
applications [20]. Their findings suggest that energy efficiency
techniques have to be carefully chosen to ascertain that the
correctness of the software remains intact. In an extension of
this work [21], Bao et al. (2016) used a similar approach to
focus exclusively on Android apps, having mined 468 energy
management commits. They found that apps in different cate-
gories typically have different approaches to energy efficiency.

Cruz et al. (2018) have provided energy efficiency patterns
in an automatic refactoring tool [4]. The tool was used to
analyze 140 open-source Android apps. As an outcome, the
authors submitted 59 pull-requests containing energy improve-
ments to the official repositories of open-source Android
applications. In another work, Cruz et al. (2019) proposed
a catalog with 22 energy patterns to help developers design
energy efficient mobile applications [13]. The authors mined
the commits, issues, and pull requests of 1027 Android apps
and 726 iOS apps to understand how developers address
energy efficiency issues. The catalog can be used to help
novice developers learn advanced energy management tech-
niques from existing practices.

From all the data collected, we only select commits from
Android projects. Changes from other platforms, such as
iOS and Desktop software, were filtered out. Moreover, we
cleansed the dataset by filtering out projects that have been
deleted and by updating projects that have moved their reposi-
tories to a different location. In addition, datasets [20] and [21]
include commits that have not been manually validated – we
only include commits that the authors manually ascertained as
proper energy changes.

In addition, we reuse the categorization of the energy
changes defined in the original datasets. Despite similar,
different datasets use different labels to indicate the same
pattern. For example, the same pattern is labeled as Power-
ConditionalStrategy:PowerSaveMode by Bao et al. (2016) [21]
and as Power Save Mode by Cruz et al. (2019) [13]. We map
these and other identical categories into unique labels3. In sum,
energy commits are classified into seven categories:
• Bug Fix & Code Refinement. Changes related to fixing

energy bugs, or refactoring code that already implements
energy management features.

3The whole set of identical categories can be found in the replication
package:https://figshare.com/s/16397140e8183708d248 (Visited on July 26,
2019).

https://figshare.com/s/16397140e8183708d248


• Power Awareness. Have a different behavior when the
device is connected/disconnected to a power station or
has different battery levels.

• Power Save Mode. Implementation of an energy efficient
mode in which some features are deactivated to improve
better energy usage.

• Power Usage Monitoring. Developers add UIs or config-
urations to inform users about the status of the battery and
let them make informed decisions about their interaction
with the application.

• Wakelock Addition. Wakelocks are used when apps
execute tasks that may take longer to execute and need
to prevent resources from getting into a sleep state (e.g.,
screen, network, audio, etc.).

• Wakelock Optimization. Inappropriate usage of wake-
locks may incur into unnecessary energy usage. Thus,
often developers have to optimize wakelock behavior,
or even replace them with other techniques (e.g., event
handlers).

• Miscellaneous. This comprises several categories of en-
ergy commits. Since we perform hypothesis tests to
statistically validate results, we need to have at least 20
commits per category. Thus, when a category comprises
less than 20 commits, we label it as Miscellaneous.

B. Baseline Commits

Although we want to assess the maintainability of energy
commits, there is no evidence in previous work on how regular
commits affect the maintainability of Android projects. E.g.,
if energy-oriented commits hinder maintainability, we need to
understand whether this result is in fact different from general
purpose commits. Thus, in parallel with energy commits, we
also analyze the maintainability of all other commits and use
these as a baseline to answer RQ1 and RQ2.

The baseline dataset is collected as follows: for each energy
commit, we obtain all the commits of the respective project
and randomly select one. In addition, we randomly select
20 commits to validate that commits are similar in terms
of complexity. By using the dataset of energy commits as
input for our baseline dataset we make sure that differences
in maintainability in the two datasets are not originated by
the specificities of different Android projects (e.g., different
contribution policies, coding guidelines, app categories, etc.).

C. Maintainability Analysis

We make use of the Software Improvement Group’s web-
based source code analysis service Better Code Hub (BCH for
short4) to collect maintainability reports of the projects. BCH
delivers a maintainability model based on 10 guidelines [15]:

1) Write short units of code. Long units are hard to test,
reuse, and understand.

2) Write simple units of code. Keeping the number of
branch points low makes units easier to modify and test.

4Better Code Hub’s website available at https://www.bettercodehub.com/
(Visited on July 26, 2019)

3) Write code once. When code is duplicated, bugs need
to be fixed in multiple places, which is inefficient and
prone to errors.

4) Keep unit interfaces small. Keeping the number of
parameters low makes units easier to understand and
reuse.

5) Separate concerns in modules. Changes in a loosely
coupled codebase are much easier to oversee and execute
than changes in a tightly coupled codebase. This is
computed based on the total fan-in of all methods in
a module. Note that a module in Java and other object-
oriented languages translates to a class.

6) Couple architecture components loosely. Independent
components ease isolated maintenance.

7) Keep architecture components balanced. Balanced
components ease locating code and foster isolation,
improving maintenance activities.

8) Keep your codebase small. Small systems are easier to
search through, analyze, and understand code.

9) Automate tests. Automated testing makes development
predictable and less risky.

10) Write clean code. Code without code smells is less
likely to bring maintainability issues.

For each guideline, BCH evaluates the compliance against a
particular guideline by setting boundaries for the percentage of
code allowed to fall in each of the four risk severity categories
(low risk, medium risk, high risk, and very high risk). If the
thresholds are not violated, the project is considered to be
compliant with the guideline. According to BCH, the guideline
thresholds are calibrated yearly based on a representative
benchmark of closed and open source software systems. Being
compliant with a guideline means that the project under
analysis is at least better than 65% of the software systems
in BCH’s benchmark.

The BCH report of the app NetGuard for a non-compliant
guideline can be seen in Fig. 2. This was extracted from the
report of the app NetGuard, used in the motivating example
of Section II. The green bar represents the percentage of
compliant lines of code. These lines of code are considered to
be compliant with ISO 25010 standard for maintainability [22].
The yellow, orange and red bars represent non-compliant lines
of code with medium, high, and very high severity levels,
respectively. Along the bars, there are also marks that refer to
the compliance thresholds for each severity level. The report
is equivalent to the information reported in Table II: a set of
thresholds, number of lines of code (LOC), and percentage
of the project for each severity level. Nonetheless, thresholds
provided by BCH do not sum to 100%: non-compliant levels
are provided in a cumulative way (e.g., the threshold for
the medium level includes high and very high levels); the
compliant-level threshold is the complement of the medium-
level threshold.

Since we want to analyze maintainability regression, we
use BCH to compute maintainability in two different versions
of the Android app: a) the version of the project before the
energy commit (vE−1) and b) the version immediately after

https://www.bettercodehub.com/


Threshold Marks

Fig. 2. BCH’s maintainability report of the app NetGuard for the guideline
Write short units of code. The app does not comply with the guideline because
the bars are not reaching the threshold marks.

TABLE II
EXAMPLE OF A BCH REPORT FOR A NON-COMPLIANT CASE.

Level Threshold LOC Percentage of Code
(%) (%)

(Low) (56.3) (1353) (18.6)
Medium 43.7 1683 23.2
High 22.3 1622 22.4
Very High 6.9 2588 35.7

the energy commit (vE). This is illustrated in Fig. 3.
Although BCH provides a detailed report of the maintain-

ability of the project, it does not compute a final score that we
can use to compare maintainability amongst different projects.
Thus, based in previous work [18], we designed an equation
to capture the distance between the current state of the project
and the standard thresholds. We have adjusted the equation to
meet the following requirements:

• The maintainability difference between two versions
of the same project is not affected by its size. In
this work, we want to evaluate the identical energy
patterns occurring in different projects. Thus, the metric
cannot use normalization based on its size – we convert
percentage data to the respective number of lines of code.

• Distance to the thresholds in high severity levels is
more penalized than in low severity levels. We use
weights based on the severity level to count lines of code
that violate maintainability guidelines.

We compute the mean average of the maintainability score

M(v) for all the selected guidelines, as follows:
M(v) =

∑
g∈G

Mg(v) (1)

where:
G = selected maintainability guidelines from BCH (e.g.,

Write short units of code, etc.)
v = version of the app under analysis.
The maintenance M based on the guideline g for a given

version of a project is computed with the following equation:

Mg =
1

|L|
∑
l∈L

C(l), L = {medium, high, veryHigh} (2)

where:
C = compliance with the maintainability guideline for the

given severity level (medium, high, and very high)
L = severity levels of maintainability infractions.
The compliance C for a given severity level l is derived by:
C(l) = LOCcompliant(l)− w(l) · LOC¬compliant(l) (3)

where:
LOCcompliant(l) = lines of code that comply with the

guideline at the given severity level l
LOC¬compliant(l) = lines of code that do not comply

with the guideline at the given
severity level l

w(l) = weight factor to boost the impact of
non-compliant lines in comparison
to compliant lines.

Finally, the term w(l) is calculated as follows:

w(l) =
1− T (l)

T (l)
(4)

where:
T (l) = threshold in percentage of the lines of code that

are accepted to be non-compliant with the
guideline for the severity level l. This is a
standard value defined by BCH, as illustrated in
Fig. 2 and Table II.

In other words, the factor w is used in Eq. 3 to highlight
the lines of code that are not complying with the guideline.
For instance, the threshold for the severity level veryHigh is
defined in Table II as T (veryHigh) = 6.9%, which derives
to a weight of w(veryHigh) = 13.5. This means that, in this
example, one non-compliant guideline is decreasing maintain-
ability score by 13.5 points while a compliant guideline is
increasing by 1.0 point. In addition, a version that is perfectly
aligned with the standard thresholds has a maintainability
score of zero.

Then, we compute the difference of maintainability (∆M )
between the energy commit (vE) and its parent commit
(vE−1), as illustrated in Fig. 3.

Statistical validation: To validate the maintainability
differences in different groups of commits (e.g., baseline and
energy commits) we use the Paired Wilcoxon signed-rank test
with the significance level α = 0.05. In other words, we test
the null hypothesis that the maintainability difference between
pairs of versions vE−1, vE (i.e., before and after an energy-
commit) follows a symmetric distribution around 0. This test



Maintainability 
Difference 

vE-2 vE-1 vE

Energy 
Commit

vE+1

M(vE-1) M(vE)

Parent 
Commit

∆M

Fig. 3. Maintainability difference for the energy commit vE .

C
om

m
un

ic
at

io
n

C
on

ne
ct

iv
ity

D
ev

el
op

m
en

t

E
du

ca
tio

n

Fi
na

nc
e

G
am

es

H
ea

lth
 A

nd
 F

itn
es

s

H
ou

se
 &

 H
om

e

In
te

rn
et

M
ul

tim
ed

ia

M
us

ic
 &

 A
ud

io
N

av
ig

at
io

n

N
ew

s 
An

d 
M

ag
az

in
es

Ph
on

e 
&

 S
m

s

Pr
od

uc
tiv

ity

R
ea

di
ng

Se
cu

ri
ty

Sy
st

em

Ti
m

e

To
ol

s

W
ea

th
er

W
ri

tin
g

0

5

10

15

20

25

30

35

40

co
un

t

8

28

21

11

6

23

1 1

40

28

6

23

3

24

6

15

4

28

9

16

2 3

Fig. 4. Categories of apps included in our study with the corresponding app
count for each category.

does not capture the absolute value of the maintainability
differences. Thus, it is not affected by confounding factors,
such as the size of the code changes in different groups.

To understand the effect-size, as advocated by the Common-
language effect sizes [23], we compute the mean difference,
the median of the difference, and the percentage of cases that
reduce maintainability.

D. Typical Maintainability Issues

From the results collected in our dataset, we select the most
evident examples of maintainability issues that arise from im-
proving energy efficiency. We manually analyze these energy-
oriented commits by examining its message and code changes.
The most evident cases are then discussed and presented to
illustrate common maintainability issues and bring awareness
on how to avoid common issues.

IV. RESULTS

We evaluated a total of 539 energy commits and 539 base-
line commits. These commits comprise 306 apps distributed
among 22 categories, as depicted in Fig. 4. In this section, we
present the results for each proposed research question.

A. What is the impact of making code changes to improve
energy efficiency on the maintainability of mobile apps? (RQ1)

The results on the impact of different categories of commits
in software maintainability are presented in the plot bar of
Fig. 5. The plot presents the results for two groups of software
changes: energy commits, and baseline commits. For each

0% 10% 20% 30% 40% 50% 60%

 Regular Change

 Energy Change

x̄= − 243
Md= 0.0
p= 0.139

x̄= − 1346
Md= − 1.3
p< 0.001

Negative
Same
Positive

Fig. 5. Maintainability differences for energy commits and baseline commits.

group, the figure provides three bars with the percentage of
commits which 1) decrease maintainability (on top, colored
in red), 2) do not change maintainability (in the middle,
colored in yellow), and 3) increase maintainability (in the
bottom, colored in green). In addition, the figure provides,
for each group, the mean (x̄) and the median (Md) of the
maintainability difference, and the p-value of the Wilcoxon
signed-rank test (p).

In the case of the regular commits, used as a baseline, 33.0%
decrease maintainability (183 cases), 38.7% do not change
maintainability (215 cases), and 28.3% improve maintainabil-
ity (157 cases). Since the p-value of the Wilcoxon signed-rank
test (p = 0.139) is not below the significance level (α = 0.05),
there is no statistical significance of the impact of regular
commits on maintainability.

On contrary, we observe clear changes for energy commits:
57.1% (310 cases) decrease software maintainability, 10.7%
do not change maintainability (61 cases), and 31.2% improve
maintainability (168 cases). The results for the Wilcoxon
signed-rank test show statistical significance that energy com-
mits decrease the maintainability of Android applications
(p < 0.001).

B. Which energy efficiency-oriented code change patterns are
more likely to affect the maintainability of mobile apps? (RQ2)

Results of the maintainability impact per category of energy
changes are presented in Fig. 6. The Wilcoxon signed-rank test
yields statistical evidence that the categories Miscellaneous
(p = 0.021), Power Save Mode (p = 0.012), and Wakelock
Addition (p = 0.003) significantly decrease the maintainability
of Android projects.

The remaining patterns, (i.e., Bug Fix & Code Refinement,
Power Awareness, Power Usage Monitoring, and Wakelock
Optimization) yielded more cases in which maintainability was
negatively affected. However, for these patterns, results are not
statistically significant.

In the category Miscellaneous, 53.1% of changes (77 cases)
have decreased maintainability, while 15.9% (23 cases) did
not bring any impact, and 31.0% (45 cases) have improved
maintainability. The impact is more evident in the category
Power Save Mode, decreasing maintainability in 78.3% of
changes (18 cases), leaving 4.3% unaffected (1 case), and
17.4% (4 cases) with an observed improvement in maintain-
ability. Finally, in the category Wakelock Addition, 65.5% have
hindered maintainability (55 cases), 6.0% (5 cases) have not



0% 10% 20% 30% 40% 50% 60% 70% 80%

Wakelock Optimization

Wakelock Addition

Power Usage Monitoring

Power Save Mode

Power Awareness

Miscellaneous

Bug Fix & Code Refinem.

N= 59
x̄= 1
Md= − 0.4
p= 0.157

N= 84
x̄= − 5
Md= − 3.3
p= 0.003

N= 74
x̄= 8
Md= − 1.1
p= 0.196

N= 23
x̄= − 1072
Md= − 11.5
p= 0.012

N= 59
x̄= 4
Md= − 1.6
p= 0.111

N= 145
x̄= − 4838
Md= − 0.6
p= 0.021

N= 95
x̄= 3
Md= − 1.0
p= 0.100

Negative
Same
Positive

Fig. 6. Maintainability differences among different types of energy commits.

yielded any difference, and 28.6% (24 cases) have registered
an improvement.

C. What are typical maintainability issues introduced by
energy-oriented code changes? (RQ3)

The following examples illustrate a subset of the maintain-
ability issues we encounter that originate from energy-oriented
changes (Maintainability Instances 1–5).5

MAINTAINABILITY INSTANCE 1

Git Repository: https://github.com/ccrama/Slide
Commit: 070c2c6
Change: Merge two different categories of notifications in the
same operation. This is a common approach to improve energy
efficiency, coined as Batch Operations6 [13].
Maintainability issue (∆M = −949): While coa-
lescing different tasks, methods ended up being ex-

5The whole instances can be found in the replication package: https:
//figshare.com/s/16397140e8183708d248 (Visited on July 26, 2019)

6More information about Batch Operations and other energy patternhttps://
tqrg.github.io/energy-patterns/#/patterns/Batch Operation (Visited on July 26,
2019).

tremely large. As a best practice, Java methods should
not go over 15 lines of code [15]. Thus, the guide-
line Write Short Units of Code was violated in method
SubredditView.onOptionsItemSelected(), which
ended with 209 lines of code. Several small helper methods
should have been implemented to keep this method short.

Maintainability Instance 1 shows an example of main-
tainability issues that were likely introduced by the lack of
awareness by developers on best practices for maintainability.
Before applying the code change, the project already had 30
methods with over 200 lines of code. Extracting issues that
are strictly related to energy-efficiency improvements is not
straightforward. Thus, we skip examples in which this dis-
tinction was not clear and opted for selecting maintainability
issues that arise from improving energy efficiency in projects
with a positive maintainability score.

MAINTAINABILITY INSTANCE 2

Git Repository: https://github.com/mozilla/MozStumbler
Commit: 37819d9
Change: New behavior to update the current GPS location.
When the user is not moving – i.e., the accelerometer is
not sensing any movement – the GPS is turned off and the
location is assumed to be constant. When the user moves
again, the GPS location updater is reactivated. This instance
is an example of energy pattern and Sensor Fusion [13].
Maintainability issue (∆M = −60): Although this new
behavior for GPS updates was added by default in the mobile
application, the previous behavior remained as an option in
the codebase. This entailed some code duplications: the logic
needed to read data from GPS satellites is exactly the same in
both behaviors. This violates the Write Code Once guideline.

MAINTAINABILITY INSTANCE 3

Git Repository: https://github.com/mozilla/MozStumbler
Commit: 6ea0268
Change: Added support for a power save mode [13], in which
the app stops scanning cell towers and Wi-Fi networks. This
change required adding extra logic in the onCreate method
of MainActivity class. In short, the method was changed
to verify whether the battery level was low and whether the
Power Save Mode was enabled in the app.
Maintainability issue (∆M = −20): Although the idea seems
trivial, developers had to add 18 extra lines of code to the al-
ready existing MainActivity.onCreate() method. The
method ended up with 45 lines of code, violating the Write
Short Units of Code guideline.

MAINTAINABILITY INSTANCE 4

Git Repository: https://github.com/einmalfel/PodListen
Commit: 2ed5a65
Change: Add a preference in which users can opt to download
new content (i.e., podcasts) only when the smartphone is
connected to the charger. This is an implementation of the
energy patterns User Knows Best and Power Awareness [13].

https://github.com/ccrama/Slide
https://github.com/ccrama/Slide/commit/070c2c6
https://figshare.com/s/16397140e8183708d248
https://figshare.com/s/16397140e8183708d248
https://tqrg.github.io/energy-patterns/#/patterns/Batch_Operation
https://tqrg.github.io/energy-patterns/#/patterns/Batch_Operation
https://github.com/mozilla/MozStumbler
https://github.com/mozilla/MozStumbler/commit/37819d9
https://github.com/mozilla/MozStumbler
https://github.com/mozilla/MozStumbler/commit/6ea0268
https://github.com/einmalfel/PodListen
https://github.com/einmalfel/PodListen/commit/2ed5a65


Maintainability issue (∆M = −20): By adding this
new user-defined setting, conditional logic was added
to the beginning of the affected methods (e.g., method
DownloadReceiver.updateDownloadQueue) to ver-
ify the preferences and the phone charging status. This leads
to a higher number of branch points per method (maximum
recommended of four [15]), violating the maintainability
guideline Write Simple Units of Code. In these cases, the
recommended approach is to split the method into simpler
ones.

MAINTAINABILITY INSTANCE 5

Git Repository: https://github.com/horn3t/PerformanceControl
Commit: cb3080e
Change: Based on the battery level of the smartphone, adjust
the power leveraged to CPU and GPU cores. This a very low
level code change that resorts to the execution of bash com-
mands to control the hardware of a smartphone device. This
example does not implement a documented energy pattern.
Maintainability issue (∆M = −37): Although the nature of
the change implies adding code with poor readability, there are
other maintainability issues that should have been avoided.
In particular, the class GPUClass, which was added to
control GPU power, violates the guideline Separate Concerns
in Modules. The methods of this class have a high number
of references through the code (i.e., high fan-in). A typical
approach to address this issue is to split the class in separate
concerns [15].

V. DISCUSSION

In this section, we answer our research questions, discussing
the implications of the analysis of results.

A. What is the impact of making code changes to improve
energy efficiency on the maintainability of mobile apps? (RQ1)

The majority of energy efficiency-oriented changes hinder
the maintainability of Android projects. Results presented in
Fig. 5 shows a decrease in maintainability in 57% of the cases.
This raises a new tradeoff when developers need to address
energy efficiency in their projects.

Previous work found evidence that developers struggle to
improve the energy efficiency of their software, lacking the
knowledge and tools to aid in this problem [1]. Our work
corroborates by showing that developers may have to reduce
maintainability for the sake of energy efficiency.

In our perspective, developers need to be able to create
energy efficient code without potentially ruining the main-
tainability of their projects. Otherwise, they may not apply
such fixes or come with too many negative code maintenance
consequences. We understand that this problem needs to be
addressed at several levels:
• Mobile frameworks need to feature energy patterns out-

of-the-box without requiring too many changes in the
software codebases.

• Documentation of mobile libraries and frameworks need
to provide developers with the best practices to implement
energy patterns.

• Programming languages should provide coding mecha-
nisms to easily implement energy patterns without com-
promising maintainability. Previous work has already
started addressing energy-efficiency concerns in program-
ming languages [24], [25]. Hopefully, these efforts can
be ported to the official mobile programming languages
(e.g., Java, Kotlin, Swift, etc.).

• Mobile Developers have to look out for maintainabil-
ity issues when implementing energy patterns. Online
services such as BCH, that play well in a continuous
integration pipeline, can help developers to be more aware
of the maintainability issues introduced by their changes.
By bringing awareness, developers can put more effort
on improving the maintainability of their code and avoid
common issues (e.g., code duplication).

B. Which energy efficiency-oriented code change patterns are
more likely to affect the maintainability of mobile apps? (RQ2)

Energy patterns Miscellaneous, Power Save Mode, and
Wakelock Addition significantly decrease the maintainabil-
ity of Android projects. Although the remaining patterns
Bug Fix & Code Refinement, Power Awareness, Power Usage
Monitoring, and Wakelock Optimization seem to reduce
maintainability, no statistical evidence was found.

This is particularly disconcerting because Power Save Mode
and Wakelock Addition are recommended as power manage-
ment solutions in the official documentation of the Android
SDK7. However, it seems that more support is needed in order
to implement patterns without compromising the maintainabil-
ity of Android projects.

Documentation should be enriched with more examples and
best practices to implement these patterns. We were not able to
find those in the official Android documentation. Moreover, the
documentation does not consistently refer to the Power Save
Mode pattern by this name, referring to it as Battery Saver in
a few cases8.

In addition, different Android versions feature different
mechanisms to these patterns. However, developers need to
make sure their software runs efficiently in different versions
of Android [26], [27]. Thus, this requires adding specific logic
for each API level, adding more complexity to the code and
making it less maintainable.

Along with the implications from RQ1, we find that im-
proving support to Power Save Mode and Wakelock Addition
would immediately help developers ship maintainable and
energy-efficient mobile software. Actually, tools providing
support to automatically apply these patterns while preserving
maintainability would be of great benefit.

C. What are typical maintainability issues introduced by
energy-oriented code changes? (RQ3)

Although cases with the highest maintainability difference
have clear examples of bad maintainability, they are not

7Documentation for Power Save Mode and Wakelocks: https://developer.
android.com/reference/android/os/PowerManager (Visited on July 26, 2019).

8Android documentation using inconsistent names for Power Save Mode:
https://developer.android.com/about/versions/pie/power#battery-saver (Visited
on July 26, 2019).

https://github.com/horn3t/PerformanceControl
https://github.com/horn3t/PerformanceControl/commit/cb3080e
https://developer.android.com/reference/android/os/PowerManager
https://developer.android.com/reference/android/os/PowerManager
https://developer.android.com/about/versions/pie/power#battery-saver


entirely affected by the energy improvement per se. That is,
other factors, such as the low experience level of the developer,
may be the cause of the maintainability issues. This problem
is illustrated in the Maintainability Instance 1.

On the contrary, the examples presented in Maintainability
Instances 2–5 reveal maintainability issues that are intrinsically
related to the strategy used to improve energy efficiency.
E.g., in the Maintainability Instance 2, developers created an
additional approach to collect sensor data but left the original
one as an option. Since the efficacy of the two approaches
is different, developers decided to feature both approaches in
their app: one more effective but less efficient and the other
less effective but more efficient. Given that the app needs to
run under many different scenarios with different constraints,
mobile apps often support different approaches to the same
feature. While this decision may be necessary, the nature of
these changes is prone to maintainability issues.

In the Maintainability Instance 4, a number of contextual
pre-conditions related to the battery level of the smartphone
were checked before granting the execution of particular ac-
tions. Mobile development frameworks should provide mecha-
nisms to support typical battery-level scenarios out of the box.
For instance, using Java annotations, particular actions could
be postponed until power-related requirements are met.

Preliminary related work has proposed programming envi-
ronments that address energy-efficiency [28], [29]. We show
that such solutions are relevant in the context of mobile
app development. Moreover, related work has improved the
specification of data types to select the most energy-efficient
type for a given context [30], [31]. Nevertheless, these solu-
tions address energy efficiency decisions at low-level, lacking
support for typical design patterns to address the energy
efficiency of mobile apps [13].

The analyzed examples show that maintainability issues
lie mainly on the lack of awareness by developers and
the insufficient support of energy-efficiency patterns from
mobile platforms. New approaches ought to be delivered
to help developers assess the maintainability of their code
changes when tackling energy-efficiency requirements. For
instance, continuous integration and continuous development
is a promising approach to address this issue. Although it is
known to promote software best practices [32], they are rare
in the mobile app world [33], [34]. In addition, results suggest
that energy-related changes ought to be tackled by developers
with additional care (e.g., code reviews).

VI. THREATS TO VALIDITY

A. Construct

We use metrics derived from static code analysis to assess
software maintainability. However, this is a broad-scoped
attribute that may not be fully capture maintainability in its five
sub-characteristics: modularity, reusability, analyzability, mod-
ifiability, and testability. Nonetheless, previous work has found
high correlation between maintainability sub-characteristics
and BCH guidelines [19].

In addition, different projects and contexts may require
different maintainability standards. Nonetheless, we use sta-

tistical hypothesis testing to mitigate confounding factors.
Moreover, BCH uses a representative benchmark of closed and
open source software systems to compute the thresholds used
in each maintainability guideline [15], [17]. This benchmark
is updated every year [15].

B. Internal

Maintainability may be affected by different coding styles
and experience level from developers of the same project. We
do not evaluate differences at that level. In addition, we do not
evaluate the maintainability difference for all regular commits
in a project. Evaluating all the commits in a project would not
be feasible using our methodology. Thus, we assume that the
size of the dataset (539 commits) is enough to mitigate random
variations in the maintainability differences of the baseline.

The nature of baseline commits scopes general-purpose
commits that may be different to energy-oriented commits in
a number of characteristics (e.g., lines of code). We assure
the two datasets are comparable by collecting the baseline
set using a random selection. Moreover, we do not analyze
the maintainability difference in terms of absolute values. In
other words, we only evaluate whether the maintainability was
improved, not changed, or worsen. In future work, we plan to
address specific categories of changes in mobile apps.

C. External

The collection of energy-oriented commits used in this work
comprises open source apps. Our methodology requires access
to data that is not publicly available for commercial apps.
The extent to which this findings generalize to commercial
apps with non-open source licenses is not assessed. Still, the
maintainability challenges pinpointed in our work are relevant
to mobile app projects regardless of their license.

We only analyze Android apps. Different platforms and
programming languages may require different coding practices
to address energy efficiency. We did not study how our findings
generalize to other mobile platforms.

We resort to a set of energy changes that were collected
from four previous works [5], [13], [20], [21]. These works
use the commit message provided by developers to classify
a given commit as an energy change. This approach discards
energy changes that did not have a commit message describing
them as such. Since extending our datasets to these commits is
not trivial, we limit the scope of this study to energy-oriented
commits with an explicit commit message. Finally, all the
energy commits in this work are described in English.

VII. RELATED WORK

In this section, we discuss related works on code maintain-
ability, energy efficiency patterns, and anti-pattern detection.

A. Code maintainability

Previous work has studied the evolution of maintainability
issues during the development of Android apps [35]. The
authors have observed that maintainability decreases over time,
being code duplication the most common maintainability issue.
In addition, they found evidence for the fact that maintain-
ability issues in Android apps occur independently of the



type of development activities performed by developers. Their
work uses a dataset from related work [36] with an under-
represented sample of energy activities, counting with only
12 occurrences. In this work, we focus on a larger sample,
counting with 539 energy activities to analyze how energy
activities affect the maintainability of Android projects.

A use case study on the Java framework JHotDraw suggests
that the adoption of design patterns is highly correlated with
the maintainability of a project – i.e., the usage of design
patterns do improve code maintainability [37]. On contrary,
related work shows that some design patterns should be
used with caution, since they may bring maintainability and
evolution issues to software projects [38]. Our work studies
how these findings apply in the case of energy patterns, for
open-source Android apps.

Previous work studied the effect of programming languages
in the quality of code found [39]. It was found that language
design has a significant yet moderate impact on software
quality. The authors have used the number of defects as a
construct of software quality. Our work analyzes software
quality in terms of code maintainability to study how it is
affected by energy efficiency-oriented commits.

B. Energy efficiency patterns

Previous works have studied the impact of different energy
efficiency patterns on mobile apps. Offloading heavy compu-
tation tasks to a cloud server was found to reduce energy
consumption up to 50% in mobile apps [40]. Other patterns
comprise featuring dark user interface themes achieve better
energy usage on mobile devices [41], [42]. Other approaches
have improved energy efficiency by finding the optimal num-
ber of display updates in a mobile app [43]. Another work has
used regular expression representations to assure an optimal
usage of the energy intensive resources of mobile devices [44].

The impact of logging practices of developers on the energy
consumption of Android apps has also been studied [45]. From
the 24 Android apps in this study, 19 exhibited at least one
version in which logging statements had a medium or large
effect size on energy consumption.

Energy patterns for mobile apps have been widely studied
in the literature [13], [20], [21]. Our work acknowledges
the importance of using energy patterns to improve energy
efficiency. However, we take a step further and study the
impact of these patterns on the quality of the app in terms
of code maintainability. In addition, we study the change-
proneness of these techniques in mobile app codebases.

C. Detecting Anti-patterns in Mobile Apps

Related work has studied how anti-patterns affect the overall
energy consumption of Android apps. Previous work on 60
Android apps have studied the influence of 9 Android-specific
code smells on energy efficiency. Results showed energy
savings up to 87 times after fixing all code smells [46]. An-
other work has studied the impact of eight performance-based
code smells on the energy efficiency of mobile apps [47].
It was found significant differences, up to 5%, on energy
consumption by fixing five of the studied code smells. Not

only code smells have been studied in this context. The impact
of picture smells on energy usage has also been assessed [48].
It was found evidence that significant energy savings incur
from using an optimal image compression and format.

These works endorse the importance of using refactoring
techniques to improve energy efficiency. In fact, anti-pattern
detectors and automatic refactoring tools have been delivered
to help developers ship energy efficient code [49]. Cruz et al.
have implemented an automatic refactoring tool for Android
apps to fix five performance issues that also increase energy
usage [4]. Palomba et al. proposed an automated tool to
identify 15 Android-specific code smells [50]. These code
smells had been flagged by previous work as a potential threat
to the maintainability and the efficiency of Android apps [51].
Our work differs by 1) identifying code changes that hinder
maintainability and 2) using code changes that already been
labeled has an energy improvement.

VIII. CONCLUSION AND FUTURE WORK

In this work, we present an empirical study on the impact
of energy commits on the maintainability of mobile apps. We
used the toolset BCH to collect maintainability reports from a
dataset of 539 energy commits of open source Android apps.

We have found evidence that energy-oriented commits sig-
nificantly decrease software maintainability in open source
Android apps: 57% of energy commits were observed to re-
duce code maintainability. Conversely, no particular influence
on maintainability can be observed. In particular, we show
that the change on maintainability is more evident for the
patterns Power Save Mode and Wakelock Addition, in which
maintainability decreases in 78% and 66% of cases.

Our findings have direct implications for different stake-
holders of mobile app development. We highlight that mobile
development frameworks should provide mechanisms to im-
plement energy patterns without hindering the maintainability
of mobile apps.

As future work, our empirical study can be extended in
different ways: analyze which maintainability guidelines are
more affected from energy commits; analyze how results stand
for different categories of mobile apps; expand our method-
ology with other software quality properties (e.g., reliability).
Furthermore, it would be interesting to validate our findings
with other mobile platforms (e.g., iOS), and also with desktop
and server applications.

ACKNOWLEDGEMENTS

We thank SIG’s Better Code Hub team for all the support as
well as help in validating our methodology.

This work is financed by National Funds through the
Portuguese funding agency, FCT - Fundação para a Ciência
e a Tecnologia with reference UID/EEA/50014/2019, the
GreenLab Project (ref. POCI-01-0145-FEDER-016718), and
the FaultLocker Project (ref. PTDC/CCI-COM/29300/2017).



REFERENCES

[1] C. Pang, A. Hindle, B. Adams, and A. E. Hassan, “What do program-
mers know about the energy consumption of software?” PeerJ PrePrints,
vol. 3, p. e886v1, 2015.

[2] C. Sahin, L. Pollock, and J. Clause, “How do code refactorings affect
energy usage?” in Proceedings of the 8th ACM/IEEE International Sym-
posium on Empirical Software Engineering and Measurement. ACM,
2014, p. 36.

[3] P. Kong, L. Li, J. Gao, K. Liu, T. F. Bissyandé, and J. Klein, “Auto-
mated testing of android apps: A systematic literature review,” IEEE
Transactions on Reliability, 2018.

[4] L. Cruz and R. Abreu, “Using automatic refactoring to improve energy
efficiency of android apps,” in XXI Ibero-American Conference on
Software Engineering (CIbSE, Best Paper Award), 2018.

[5] ——, “Measuring the energy footprint of mobile testing frameworks,”
in Software Engineering Companion (ICSE-C), 2018 IEEE/ACM 38th
International Conference on. IEEE, 2018.

[6] M. Linares-Vásquez, G. Bavota, C. Bernal-Cárdenas, M. D. Penta,
R. Oliveto, and D. Poshyvanyk, “Multi-objective optimization of
energy consumption of guis in android apps,” ACM Trans. Softw.
Eng. Methodol., vol. 27, no. 3, pp. 14:1–14:47, Sep. 2018. [Online].
Available: http://doi.acm.org/10.1145/3241742

[7] D. Li, Y. Lyu, J. Gui, and W. G. Halfond, “Automated energy opti-
mization of http requests for mobile applications,” in Proceedings of the
38th International Conference on Software Engineering (ICSE). ACM,
2016, pp. 249–260.

[8] S. Chowdhury, S. Borle, S. Romansky, and A. Hindle, “Greenscaler:
training software energy models with automatic test generation,” Em-
pirical Software Engineering, pp. 1–44, 2018.

[9] S. Boonkrong and P. C. Dinh, “Reducing battery consumption of data
polling and pushing techniques on android using gzip,” in Information
Technology and Electrical Engineering (ICITEE), 2015 7th International
Conference on. IEEE, 2015, pp. 565–570.

[10] S. A. Chowdhury and A. Hindle, “Greenoracle: Estimating software
energy consumption with energy measurement corpora,” in Proceedings
of the 13th International Conference on Mining Software Repositories.
ACM, 2016, pp. 49–60.

[11] D. Di Nucci, F. Palomba, A. Prota, A. Panichella, A. Zaidman, and
A. De Lucia, “Petra: a software-based tool for estimating the energy
profile of android applications,” in Proceedings of the 39th International
Conference on Software Engineering Companion. IEEE Press, 2017,
pp. 3–6.

[12] L. Li, T. F. Bissyandé, M. Papadakis, S. Rasthofer, A. Bartel, D. Octeau,
J. Klein, and Y. Le Traon, “Static analysis of android apps: A systematic
literature review,” Information and Software Technology, 2017.

[13] L. Cruz and R. Abreu, “Catalog of energy patterns for mobile applica-
tions,” Empirical Software Engineering, Dec 2019.

[14] International Organization for Standardization, “Systems and software
engineering: Systems and software quality requirements and evaluation
(SQuaRE): System and software quality models,” ISO/IEC, Geneva,
Switzerland, Standard, 2011.

[15] J. Visser, S. Rigal, R. van der Leek, P. van Eck, and G. Wijnholds, Build-
ing Maintainable Software, Java Edition: Ten Guidelines for Future-
Proof Code. ” O’Reilly Media, Inc.”, 2016.

[16] T. Kuipers, I. Heitlager, and J. Visser, “A practical model for
measuring maintainability,” in 6th International Conference on the
Quality of Information and Communications Technology (QUATIC
2007)(QUATIC), vol. 00, 09 2007, pp. 30–39. [Online]. Available:
doi.ieeecomputersociety.org/10.1109/QUATIC.2007.8

[17] R. Baggen, J. P. Correia, K. Schill, and J. Visser, “Standardized code
quality benchmarking for improving software maintainability,” Software
Quality Journal, vol. 20, no. 2, pp. 287–307, 2012.

[18] M. Olivari, “Maintainable production: Mapping software quality change
to source code contributions,” Master’s thesis, University of Amsterdam,
2018.

[19] D. Bijlsma, M. A. Ferreira, B. Luijten, and J. Visser, “Faster issue
resolution with higher technical quality of software,” Software quality
journal, vol. 20, no. 2, pp. 265–285, 2012.

[20] I. Moura, G. Pinto, F. Ebert, and F. Castor, “Mining energy-aware
commits,” in Proceedings of the 12th Working Conference on Mining
Software Repositories. IEEE Press, 2015, pp. 56–67.

[21] L. Bao, D. Lo, X. Xia, X. Wang, and C. Tian, “How android app
developers manage power consumption?: An empirical study by mining
power management commits,” in Proceedings of the 13th International
Conference on Mining Software Repositories. ACM, 2016, pp. 37–48.

[22] O. internationale de normalisation, Systems and Software Engineering:
Systems and Software Quality Requirements and Evaluation (SQuaRE):
System and Software Quality Models. ISO/IEC, 2011.

[23] K. O. McGraw and S. Wong, “A common language effect size statistic.”
Psychological bulletin, vol. 111, no. 2, p. 361, 1992.

[24] R. Pereira, M. Couto, F. Ribeiro, R. Rua, J. Cunha, J. P. Fernandes,
and J. Saraiva, “Energy efficiency across programming languages: how
do energy, time, and memory relate?” in Proceedings of the 10th ACM
SIGPLAN International Conference on Software Language Engineering.
ACM, 2017, pp. 256–267.

[25] W. Oliveira, R. Oliveira, and F. Castor, “A study on the energy con-
sumption of android app development approaches,” in Mining Software
Repositories (MSR), 2017 IEEE/ACM 14th International Conference on.
IEEE, 2017, pp. 42–52.

[26] H. Muccini, A. D. Francesco, and P. Esposito, “Software testing
of mobile applications: Challenges and future research directions,”
in 7th International Workshop on Automation of Software Test, AST
2012, Zurich, Switzerland, June 2-3, 2012, 2012, pp. 29–35. [Online].
Available: https://doi.org/10.1109/IWAST.2012.6228987

[27] K. An, N. Meng, and E. Tilevich, “Automatic inference of
java-to-swift translation rules for porting mobile applications,”
in Proceedings of the 5th International Conference on Mobile
Software Engineering and Systems, ser. MOBILESoft ’18. New
York, NY, USA: ACM, 2018, pp. 180–190. [Online]. Available:
http://doi.acm.org/10.1145/3197231.3197240

[28] K. S. Yıldırım, A. Y. Majid, D. Patoukas, K. Schaper, P. Pawelczak,
and J. Hester, “Ink: Reactive kernel for tiny batteryless sensors,” in
Proceedings of the 16th ACM Conference on Embedded Networked
Sensor Systems. ACM, 2018, pp. 41–53.

[29] H. S. Zhu, C. Lin, and Y. D. Liu, “A programming model for sustainable
software,” in 2015 IEEE/ACM 37th IEEE International Conference on
Software Engineering, vol. 1. IEEE, 2015, pp. 767–777.

[30] M. Cohen, H. S. Zhu, E. E. Senem, and Y. D. Liu, “Energy types,” in
ACM SIGPLAN Notices, vol. 47, no. 10. ACM, 2012, pp. 831–850.

[31] A. Sampson, W. Dietl, E. Fortuna, D. Gnanapragasam, L. Ceze, and
D. Grossman, “Enerj: Approximate data types for safe and general low-
power computation,” in ACM SIGPLAN Notices, vol. 46, no. 6. ACM,
2011, pp. 164–174.

[32] Y. Zhao, A. Serebrenik, Y. Zhou, V. Filkov, and B. Vasilescu, “The
impact of continuous integration on other software development prac-
tices: A large-scale empirical study,” 32nd IEEE/ACM International
Conference on Automated Software Engineering, 2017.

[33] L. Cruz, R. Abreu, and D. Lo, “To the attention of mobile software
developers: Guess what, test your app!” Empirical Software Engineering,
Feb 2019.

[34] P. S. Kochhar, F. Thung, N. Nagappan, T. Zimmermann, and D. Lo,
“Understanding the test automation culture of app developers,” in
Software Testing, Verification and Validation (ICST), 2015 IEEE 8th
International Conference on. IEEE, 2015, pp. 1–10.

[35] I. Malavolta, R. Verdecchia, B. Filipovic, M. Bruntink, and P. Lago,
“How maintainability issues of android apps evolve,” in 2018 IEEE
International Conference on Software Maintenance and Evolution (IC-
SME). IEEE, 2018, pp. 334–344.

[36] L. Pascarella, F.-X. Geiger, F. Palomba, D. Di Nucci, I. Malavolta, and
A. Bacchelli, “Self-reported activities of android developers,” in 5th
IEEE/ACM International Conference on Mobile Software Engineering
and Systems, New York, NY, 2018.

[37] P. Hegedűs, D. Bán, R. Ferenc, and T. Gyimóthy, “Myth or reality?
analyzing the effect of design patterns on software maintainability,” in
Computer Applications for Software Engineering, Disaster Recovery,
and Business Continuity. Springer, 2012, pp. 138–145.

[38] F. Khomh and Y.-G. Gueheneuce, “Do design patterns impact software
quality positively?” in Software Maintenance and Reengineering, 2008.
CSMR 2008. 12th European Conference on. IEEE, 2008, pp. 274–278.

[39] B. Ray, D. Posnett, V. Filkov, and P. Devanbu, “A large scale study of
programming languages and code quality in github,” in Proceedings of
the 22nd ACM SIGSOFT International Symposium on Foundations of
Software Engineering. ACM, 2014, pp. 155–165.

[40] Y.-W. Kwon and E. Tilevich, “Reducing the energy consumption of mo-
bile applications behind the scenes,” in Software Maintenance (ICSM),
2013 29th IEEE International Conference on. IEEE, 2013, pp. 170–
179.

[41] T. Agolli, L. Pollock, and J. Clause, “Investigating decreasing energy
usage in mobile apps via indistinguishable color changes,” in Mobile
Software Engineering and Systems (MOBILESoft), 2017 IEEE/ACM 4th
International Conference on. IEEE, 2017, pp. 30–34.

http://doi.acm.org/10.1145/3241742
doi.ieeecomputersociety.org/10.1109/QUATIC.2007.8
https://doi.org/10.1109/IWAST.2012.6228987
http://doi.acm.org/10.1145/3197231.3197240


[42] M. Linares-Vásquez, C. Bernal-Cárdenas, G. Bavota, R. Oliveto,
M. Di Penta, and D. Poshyvanyk, “Gemma: multi-objective optimization
of energy consumption of guis in android apps,” in Proceedings of
the 39th International Conference on Software Engineering Companion.
IEEE Press, 2017, pp. 11–14.

[43] D. Kim, N. Jung, Y. Chon, and H. Cha, “Content-centric energy man-
agement of mobile displays,” IEEE Transactions on Mobile Computing,
vol. 15, no. 8, pp. 1925–1938, 2016.

[44] A. Banerjee and A. Roychoudhury, “Automated re-factoring of android
apps to enhance energy-efficiency,” in Mobile Software Engineering and
Systems (MOBILESoft), 2016 IEEE/ACM International Conference on.
IEEE, 2016, pp. 139–150.

[45] S. Chowdhury, S. Di Nardo, A. Hindle, and Z. M. J. Jiang, “An
exploratory study on assessing the energy impact of logging on android
applications,” Empirical Software Engineering, vol. 23, no. 3, pp. 1422–
1456, 2018.

[46] F. Palomba, D. Di Nucci, A. Panichella, A. Zaidman, and A. De Lucia,
“On the impact of code smells on the energy consumption of mobile
applications,” Information and Software Technology, vol. 105, pp. 43–
55, 2019.

[47] L. Cruz and R. Abreu, “Performance-based guidelines for energy

efficient mobile applications,” in Mobile Software Engineering and
Systems (MOBILESoft), 2017 IEEE/ACM 4th International Conference
on. IEEE, 2017, pp. 46–57.

[48] A. Carette, M. A. A. Younes, G. Hecht, N. Moha, and R. Rouvoy, “In-
vestigating the energy impact of android smells,” in 24th International
IEEE Conference on Software Analysis, Evolution and Reengineering
(SANER). IEEE, 2017, p. 10.

[49] R. Morales, R. Saborido, F. Khomh, F. Chicano, and G. Antoniol,
“Earmo: an energy-aware refactoring approach for mobile apps,” IEEE
Transactions on Software Engineering, vol. 44, no. 12, pp. 1176–1206,
2018.

[50] F. Palomba, D. Di Nucci, A. Panichella, A. Zaidman, and A. De Lucia,
“Lightweight detection of android-specific code smells: The adoctor
project,” in 2017 IEEE 24th International Conference on Software
Analysis, Evolution and Reengineering (SANER). IEEE, 2017, pp. 487–
491.

[51] J. Reimann, M. Brylski, and U. Aßmann, “A tool-supported quality
smell catalogue for android developers,” in Proc. of the conference Mod-
ellierung 2014 in the Workshop Modellbasierte und modellgetriebene
Softwaremodernisierung–MMSM, vol. 2014, 2014.


	Introduction
	Motivating Example & Research Questions
	Methodology
	Dataset
	Baseline Commits
	Maintainability Analysis
	Typical Maintainability Issues

	Results
	What is the impact of making code changes to improve energy efficiency on the maintainability of mobile apps? (RQ1)
	Which energy efficiency-oriented code change patterns are more likely to affect the maintainability of mobile apps? (RQ2)
	What are typical maintainability issues introduced by energy-oriented code changes? (RQ3)

	Discussion
	What is the impact of making code changes to improve energy efficiency on the maintainability of mobile apps? (RQ1)
	Which energy efficiency-oriented code change patterns are more likely to affect the maintainability of mobile apps? (RQ2)
	What are typical maintainability issues introduced by energy-oriented code changes? (RQ3)

	Threats to Validity
	Construct
	Internal
	External

	Related Work
	Code maintainability
	Energy efficiency patterns
	Detecting Anti-patterns in Mobile Apps

	Conclusion and Future Work
	References

