
Noname manuscript No.
(will be inserted by the editor)

To the Attention of Mobile Software Developers:
Guess What, Test your App!

Luis Cruz · Rui Abreu · David Lo

the date of receipt and acceptance should be inserted later

Abstract Software testing is an important phase in the software development life-
cycle because it helps in identifying bugs in a software system before it is shipped
into the hand of its end users. There are numerous studies on how developers
test general-purpose software applications. The idiosyncrasies of mobile software
applications, however, set mobile apps apart from general-purpose systems (e.g.,
desktop, stand-alone applications, web services). This paper investigates working
habits and challenges of mobile software developers with respect to testing. A key
finding of our exhaustive study, using 1000 Android apps, demonstrates that mo-
bile apps are still tested in a very ad hoc way, if tested at all. However, we show
that, as in other types of software, testing increases the quality of apps (demon-
strated in user ratings and number of code issues). Furthermore, we find evidence
that tests are essential when it comes to engaging the community to contribute
to mobile open source software. We discuss reasons and potential directions to
address our findings. Yet another relevant finding of our study is that Continuous
Integration and Continuous Deployment (CI/CD) pipelines are rare in the mobile
apps world (only 26% of the apps are developed in projects employing CI/CD)
– we argue that one of the main reasons is due to the lack of exhaustive and
automatic testing.

Keywords Software testing; Mobile applications; Open source software; Software
quality; Software metrics.

Luis Cruz
INESC ID, Lisbon, Portugal
E-mail: luiscruz@fe.up.pt

Rui Abreu
INESC ID and IST, University of Lisbon, Lisbon, Portugal
E-mail: rui@computer.org

David Lo
School of Information Systems, Singapore Management University, Singapore
E-mail: davidlo@smu.edu.sg



2 Luis Cruz et al.

1 Introduction

Over the last couple of years, mobile devices, such as smartphones and tablets, have
become extremely popular. According to a report by Gartner in 20151, worldwide
sales of smartphones to end users had a record 2014 fourth quarter with an increase
of 29.9% from the fourth quarter of 2013, reaching 367.5 million units. Amongst
the reasons for the popularity of mobile devices is the ever increasing number of
mobile apps available, making companies and their products more accessible to
end users. As an example, nine years after the release of the first smartphone
running Android2, there are 3.5 million mobile applications on Google Play3,4.

Mobile app developers can resort to several tools, frameworks and services
to develop and ensure the quality of their apps (Linares-Vásquez et al., 2017a).
However, it is still a fact that errors creep into deployed software, which may
significantly decrease the reputation of developers and companies alike. Software
testing is an important phase in the software development lifecycle because it helps
in identifying bugs in the software system before it is shipped into the hand of end
users. There are numerous studies on how developers test general-purpose software
applications. The idiosyncrasies of mobile software apps, however, set mobile apps
apart from general-purpose systems (e.g., desktop, stand-alone applications, web
services) (Hu and Neamtiu, 2011; Picco et al., 2014).

Therefore, the onset of mobile apps came with a new ecosystem where tradi-
tional testing tools do not always apply (Moran et al., 2017; Wang and Alshboul,
2015; Maji et al., 2010): complex user interactions (e.g., swipe, pinch, etc.) need to
be supported (Zaeem et al., 2014); apps have to account for devices with limited
resources (e.g., limited power source, lower processing capability); developers have
to factor in an ever-increasing number of devices as well as OS versions (Khalid
et al., 2014); apps typically follow a weekly/bi-weekly time-based release strategy
which creates critical time constraints in testing tasks (Nayebi et al., 2016). More-
over, manual testing is not a cost-effective approach to assure software quality and
ought to be replaced by automated techniques (Muccini et al., 2012).

This work studies the adoption of automated testing by the Android open
source community. We use the term “automated testing” as a synonym of “test
automation”: the process in which testers write code/test scripts to automate
test execution. Automated Input Generation (AIG) techniques were not consid-
ered in this study. We analyze the adoption of unit tests, Graphical User In-
terface (GUI) tests, cloud based testing services, and Continuous Integration /
Continuous Deployment (CI/CD). Previous work, in a survey with 83 Android
developers, suggests that mobile developers are failing to adopt automated testing
techniques (Kochhar et al., 2015). This is concerning since testing is an important
factor in software maintainability (Visser et al., 2016). We investigate this evi-
dence by systematically checking the codebase of 1000 Android projects released
as Free and Open Source Software (FOSS). Moreover, we delve into a broader set

1 Gartner’s study on smartphone sales: https://goo.gl/w757Vh (Visited on February 12,
2019).

2 The first commercially available smartphone running Android was the HTC Dream, also
known as T-Mobile G1, announced on September 23, 2008: https://goo.gl/QPBdw9

3 Google’s market for Android apps.
4 Number of available applications in the Google Play Store from December 2009 to Decem-

ber 2017 available at https://goo.gl/8P1KD7.



To the Attention of Mobile Software Developers: Guess What, Test your App! 3

of testing technologies and analyze the potential impact they can have in different
aspects of the mobile apps (e.g., popularity, issues, etc.).

As in related studies (Krutz et al., 2015), we opted to use open source mobile
applications due to the availability of the data needed for our analysis. Results
cannot be extrapolated to industrial, paid apps, but we provide. In particular, our
work answers the following research questions:

RQ1: What is the prevalence of automated testing technologies in the FOSS
mobile app development community?

Why and How: It is widely accepted that tests play an important role in as-
suring the quality of software code. However, the extent to which tests are being
adopted amongst the Android FOSS community is still not known. We want to
assess whether developers have been able to integrate tests in their projects and
which technologies have gained their acceptance. We do that by developing a static
analysis tool that collects data from an Android project regarding its usage of test
automation technologies. We apply the tool to our dataset of 1000 apps and ana-
lyze the pervasion of the different technologies.

Main findings: FOSS mobile apps are still tested in a very ad hoc way, if tested
at all. Testing technologies were absent in almost 60% of projects in this study.
JUnit and Espresso were the most popular technologies in their category with an
adoption of 36% and 15%, respectively. Novel testing and development techniques
for mobile apps should provide a simple integration with these two technologies
to prevent incompatibility issues and promote test code reuse.

RQ2: Are today’s mature FOSS Android apps using more automated testing
than yesterday’s?

Why and How: We want to understand how the community of Android developers
and researchers is changing in terms of adoption of automated testing. In this
study, we compare the pervasion of automated tests in FOSS Android apps across
different years.

Main findings: Automated testing has become more popular in recent years.
The trend shows that developers are becoming more aware of the importance of
automated testing. This is particularly evident in unit testing, but GUI testing
also shows a promising gain in popularity.

RQ3: How does automated testing relates to popularity metrics in FOSS
Android apps?

Why and How: One of the goals of mobile developers is to increase the popularity
of their apps. Although many different things can affect the popularity of apps,
we study how it can be related to automated tests. We run hypothesis tests over
five popularity metrics to assess significant differences between projects with and
without tests.



4 Luis Cruz et al.

Main findings: Tests are essential when it comes to engaging the community to
contribute to mobile open source software. We found that projects using automated
testing also reveal a higher number of contributors and commits. The number of
Github Forks, Github Stars, and ratings from Google Play users does not reveal any
significant impact.

RQ4: How does automated testing affect code issues in FOSS Android apps?

Why and How: The collection of code issues helps developers assess whether
their code follows good design architecture principles. It can help developers avoid
potential bugs, performance issues, or security vulnerabilities in their software. We
use the static analysis tool Sonar to collect code issues in our dataset of FOSS
Android apps and study whether automated testing brings significant differences.

Main findings: Automated testing is important to assure the quality of software.
This is also evident in terms of code issues. Projects without tests have a signifi-
cantly higher number of minor code issues.

RQ5: What is the relationship between the adoption of CI/CD and automated
testing?

Why and How: Previous work showed the adoption of CI/CD with automated
testing has beneficial results in software projects Hilton et al. (2016); Zhao et al.
(2017). For that reason, the adoption of CI/CD is getting momentum in software
projects. We want to study whether CI/CD technologies have been able to suc-
cessfully address the FOSS Android and whether developers are getting the most
out of CI/CD in their projects. We use static analysis to collect data regarding
the adoption of CI/CD technologies and compare it to the adoption of automated
testing. In addition, we discuss how numbers differ from desktop software.

Main findings: CI/CD adoption in open source mobile app development is not as
predominant as in other platforms — only 26% of apps are using it in their devel-
opment process. We argue that one of the main reasons is the lack of exhaustive
and automatic testing — results show evidence that open source projects with
CI/CD are more likely to automate tests.

In sum, our work makes the following contributions:

– We created a publicly available dataset with open source apps. The dataset was
built by combining data from multiple sources, including metrics of source code
quality, popularity, testing tools usage, and CI/CD services adoption. Dataset
is available here: https://github.com/luiscruz/android_test_inspector.

– We have studied the trends of the adoption of testing techniques in the Android
developer community and identified a set of apps that use automated tests in
their development cycle.

– We have developed a tool for static detection of usage of state-of-art test-
ing frameworks. Available here: https://github.com/luiscruz/android_test_
inspector.

– We have investigated the relationship of automated test adoption with quality
and popularity metrics for Android apps.



To the Attention of Mobile Software Developers: Guess What, Test your App! 5

– We have investigated the relationship between automated tests and CI/CD
adoption.

– We deliver a list of 54 apps that comply with testing best practices.

The remainder of this paper is organized as follows. Related work is discussed
in Section 2. Section 3 outlines the methodology used to collect data in our study.
Following, Sections 4–8 describe our methodology and present and discuss the
results for each proposed research question. In Section 9, we present a Hall of
Fame with apps that comply with the criteria of testing best practices. Threats
to the validity are discussed in Section 10. Finally, we draw our conclusions and
point directions for future work in Section 11.

2 Related Work

Studies based on data collected from app stores have become a powerful source of
information with a direct impact on mobile software teams (Martin et al., 2017).
More works have contributed with datasets of open source Android apps (Geiger
et al., 2018; Pascarella et al., 2018; Das et al., 2016). Our paper releases a dataset
that differentiates by containing information regarding testing practices in Android
projects.

Previous work collected 627 apps from F-Droid to study the testing culture of
app developers (Kochhar et al., 2015). It was found that at the time of the analysis
(2015) only 14% of apps contained test cases and that only 41 apps had runnable
test cases from which only 4 had line coverage above 40%. In addition, the authors
conducted a survey on 83 Android app developers and 127 Windows app develop-
ers to understand the common testing tools and the main challenges faced during
testing. The most used framework was JUnit, being used by 18 Android develop-
ers, followed by Monkeyrunner and Espresso, with 8 and 7 developers, respectively.
According to developers in the survey, the main challenges while testing are time
constraints, compatibility issues, lack of exposure, cumbersome tools, emphasis on
development, lack of organization support, unclear benefits, poor documentation,
lack of experience, and steep learning curve. Our work extends and completes the
study by Kochhar et al. via a more extensive data sample (1000 Android apps)
and additional analyses. We adopt a comprehensive mining-software-repositories-
cum-static-analysis approach to collect mobile software code repositories and em-
pirically assess the benefits of having tests, rather than surveying developers. In
addition, we compare the presence of tests in the project with potential issues of
the app, satisfaction level of end users, among other popularity metrics. Moreover,
we assess the use of different testing tools using static analysis and provide in-
sights into observed trends on automated testing in the past years and compare
the testing culture with the adoption of CI/CD.

More works have attempted to capture the current picture of app testing.
Silva et al. have studied 25 open source Android apps in terms of test frameworks
being used and how developers are addressing mobile-specific challenges (Silva
et al., 2016). Results show that apps are not being properly tested, and tests
for app executions under limited resource constraints are practically absent. It
suggests that a lack of effective tools is one of the reasons for this phenomena. Our
work differentiates itself by considering a more representative sample of apps and



6 Luis Cruz et al.

complements Silva et al. by providing insights on how developers and researchers
can help bring new types of tests into the app development community.

Coppola et al. studied the fragility of GUI testing in Android apps Coppola
et al. (2017). The authors collected 18,930 open source apps available on Github
and analyzed the prevalence of five scripted GUI testing technologies. However,
toy apps or forks of real apps were not factored out from the sample — we un-
derstand that real apps were underrepresented (Cosentino et al., 2016; Bird et al.,
2009). Thus, we restrict our study to apps that were published in F-droid. In addi-
tion, we extend our study to a broader set of testing technologies, while studying
relationships between automated testing and other metrics of a project.

Corral and Fronza have compared the success of apps with quality code met-
rics (Corral and Fronza, 2015). They analyzed a sample of 100 apps and consider
a number of code metrics: Weighted Methods per Class, Depth of Inheritance Tree,
Number of Children, Response for a Class, Coupling between Objects, Lack of Cohesion

in Methods, Cyclomatic Complexity, and Logical Lines of Code. Results demonstrated
that these metrics only have a marginal impact on the success of the apps, showing
that real drivers of user satisfaction are beyond source code attributes. Given that
mobile apps are very different from traditional applications we find the above met-
rics too generic. We extend Corral and Fronza’s work by focusing on the impact of
test automation. Furthermore, besides user satisfaction, we also analyze a number
of code issues detected using static analysis and popularity metrics important for
the survival of an open source project (e.g., number of contributors).

Previous work has studied the state-of-the-art tools, frameworks, and services
for automated testing of mobile apps (Linares-Vásquez et al., 2017a). It revealed
that automated test tools should aid developers to overcome the following chal-
lenges: 1) restricted time/budget for testing, 2) needs for diverse types of testing
(e.g., energy), and 3) pressure from users for continuous delivery. Related work
surveyed developers of open source apps to understand their main barriers to
mobile testing (Linares-Vásquez et al., 2017b). Developers identified easy mainte-
nance, low overhead in the development cycle, and expressiveness of test cases as
important aspects that should be addressed by existing frameworks.

Previous work has compared different techniques and tools for AIG (Choudhary
et al., 2015; Amalfitano et al., 2017; Zeng et al., 2016). Choudhary et al. have
compared AIG testing tools in terms of ease of use, ability to work on multiple
platforms, code coverage, and ability to detect faults (Choudhary et al., 2015). A
follow-up study showed that AIG techniques are not ready yet for an industrial
setting since activity coverage is dramatically low (Zeng et al., 2016). Our work
does not scope AIG techniques — we focus on automated testing strategies that
require the creation of test cases. In addition, we differ by studying the prevalence
of testing tools and which test frameworks have actually gained the acceptance of
mobile developers.

Other works have empirically studied tests on open source software. Kochhar
et al. studied the correlation between the presence of test cases and project devel-
opment characteristics (Kochhar et al., 2013a,b). It was found that tests increase
the number of lines of code and the size of development teams. Our work adds
value to these contributions by providing insights in the context of mobile app
development, and by analyzing a broader set of metrics to study the potential
benefits of automated tests in mobile app development.



To the Attention of Mobile Software Developers: Guess What, Test your App! 7

Hilton et al. analyzed 34, 000 open source projects on GitHub and surveyed 442
developers (Hilton et al., 2016) on the implications of adopting CI/CD in open
source software. Results showed that most popular projects are using CI/CD and
its adoption is continuously increasing. A similar approach showed that developers
are improving automated tests after the adoption CI/CD (Zhao et al., 2017). Our
work only focuses on the relation between automated tests and CI/CD in the
context of mobile development, bringing some enlightenment on how the adoption
of CI/CD differs in mobile app development.

3 Data collection

Data was gathered from multiple sources, as presented in Figure 1. F-droid, a
catalog that lists 2, 800 free and open source Android apps5, is used to obtain
metadata, package name, and source code repository. GitHub is used to collect
activity and popularity metrics about the development of the app: number of stars,
number of contributors, number of commits, and number of forks. Other popularity
metrics are also gathered from Google Play Store: rating, and the number of users
who rated the app. Test coverage information is obtained from the cloud services
Coveralls and Codecov.

Ratings, 
Downloads

Usage of test framework, 
cloud test services, CI/CD, 

coverage

Repo activity 
and popularity 

Code
Issues

Github Google Play

F-Droid

SonarQube

Source
Code Repo Web APIs

Static
Analysis

Dataset

1288 apps

1000 apps 638 apps

967 apps 1000 apps1000 apps 638 apps

Fig. 1 Flow of data collection in the study.

We extended the data by running the static analysis tool Sonar6 to collect
quality-related metrics and potential bugs. We select Sonar because it integrates

5 F-droid’s website: https://goo.gl/NPUusK (Visited on February 12, 2019).
6 Sonar’s website: https://goo.gl/svp88G (Visited on February 12, 2019).



8 Luis Cruz et al.

the results of the state-of-the-art analysis tools FindBugs, Checkstyle, and PMD.
Furthermore, it has been used with the same purpose in previous work (Krutz
et al., 2015).

For each project, we gather the total number of code issues detected by Sonar.
We also count the number of code issues according to severity, labeled as blocker

(issue with severe impact on app behavior and that must be fixed immediately;
e.g., memory leak), critical (issue that might lead to an unexpected behavior in
production without impacting the integrity of the whole application; e.g., badly
caught exceptions), major (issue that might have a substantial impact on produc-
tivity; e.g., too complex methods), and minor (issue that might have a potential
and minor impact on productivity; e.g., naming conventions).

Directly comparing the number of issues in different projects can be misleading:
small projects are more likely to have fewer issues than large projects, regardless
of projects’ code quality. To reduce this effect, we controlled for the size of the
project by normalizing the number of issues by the number of files in a project, as
follows:

I ′(p) =
I(p)

F (p)
, (1)

where p is a given project, I(p) the number of issues of p, and F (p) the number of
files.

Since one of the main goals in this work is to assess how apps are being tested,
we developed a tool to infer which testing frameworks a given project is using7. It
works by fetching the source code of the app and looking for imported packages and
configuration files. The efficacy of this tool was validated with a random sample
of apps which was manually labeled.

Table 1 lists all supported tools and frameworks aside with the number of
search results in StackOverflow, as a proxy of popularity among the developers’
community. Unit test tools, user interface (UI) automation frameworks, and cloud
based testing services were selected based on a previous survey on tools that
support mobile testing (Linares-Vásquez et al., 2017a) and an online curated list
of Android tools8.

We also collect information about the usage of Continuous Integration and
Continuous Delivery (CI/CD) services in our study: Travis CI, Circle CI, AppVeyor,
Codeship, Codefresh, and Wercker. The selection is based on CI/CD services that
have a free plan for open source projects and which adoption can be automatically
assessed — i.e., either they save their configuration in the code repository or have
an open API that can be accessed with the GitHub organization and project name.
Self-hosted CI/CD platforms (e.g., GoCD, Jenkins) are not included in this list.
Although this is a subset of CI/CD services that can be used in a project, previous
work found that Travis CI and Circle CI have more than 90% of share in GitHub

projects using CI/CD services (Hilton et al., 2016).

We analyzed Android apps that are open source and published in F-droid. The
most popular version control repository is GitHub, being used by around 80% of

7 Source code repository of the tool created to inspect automated testing technologies in
Android projects: https://github.com/luiscruz/android_test_inspector

8 List of Android tools curated by Furiya: https://goo.gl/yLrWgW (Visited on February 12,
2019).



To the Attention of Mobile Software Developers: Guess What, Test your App! 9

Table 1 Android tools analyzed

Name StackOverflow Mentions∗

Unit testing
JUnit 67, 153
AndroidJunitRunner 164
RoboElectric 245
RoboSpock 23

GUI testing
AndroidViewClient 474
Appium 9, 687
Calabash 1, 856
Espresso 4, 374
Monkeyrunner 1, 299
PythonUIAutomator 0
Robotium 3, 019
UIAutomator 1, 918

Cloud testing services
Project Quantum 0
Qmetry 27
Saucelabs 1, 087
Firebase 100, 350
Perfecto 224
Bitbar(Kaasila et al., 2012) 16

CI/CD services
Travis CI 3, 662
Circle CI 377
AppVeyor 655
CodeShip 564
CodeFresh 6
Wercker 200

∗StackOverflow mentions as of January 26, 2018

projects. To make data collection clean, only projects using GitHub were consid-
ered. No other filtering was applied except in particular analyses that required
data that was not available for all apps (e.g., Google Play’s ratings).

Although F-droid ’s documentation reports that it hosts a total 2, 800 apps9,
only 1288 actually make it to the end user catalog. As we restrict our study to
projects using GitHub, in total we analyze 1000 Android apps, roughly 35GB of
source code collected between September 1–8, 2017. Apps in the dataset are spread
amongst 17 categories, as presented in Figure 2, and are aged up to 9 years. The
distribution of apps by age is presented in Figure 3.

Since in a few projects the static analysis tool Sonar does not successfully
run, we collect code issues data for 967 apps, analyzing a total of 329, 676 files.
Additional data gathered from the Google Play store is available for 638 apps.

Reproducibility-oriented Summary

To power reproducibility, based on previous guidelines for app store analyses (Mar-
tin et al., 2017), our work is best described as follows:

9 As reported in the F-droid ’s wiki page Repository Maintenance: https://goo.gl/VfEQMg
(Visited on January 26, 2018).



10 Luis Cruz et al.

C
on

ne
ct

iv
ity

D
ev

el
op

m
en

t

G
am

es

G
ra

ph
ic

s

In
te

rn
et

M
on

ey

M
ul

tim
ed

ia

N
av

ig
at

io
n

Ph
on

e 
&

 S
M

S

R
ea

di
ng

Sc
ie

nc
e 

&
 E

du
ca

tio
n

Se
cu

ri
ty

Sp
or

ts
 &

 H
ea

lth

Sy
st

em

Th
em

in
g

Ti
m

e

W
ri

tin
g

Category

0

50

100

150
N

um
be

r 
of

 A
pp

s

Fig. 2 Categories of apps included in our study with the corresponding app count for each
category.

0 1 2 3 4 5 6 7 8 9

Age

0

50

100

150

200

N
um

be
r 

of
 a

pp
s

Fig. 3 Distribution of apps by age.

App Stores used to gather collections of apps. We use apps available on
F-Droid and combine it with data available on Google Play store.
Total number of apps used. The study comprises 1000 apps.
Breakdown of free/paid apps used in the study. Only free apps are listed
in our dataset.
Categories used. Apps in this study are spread across 17 categories. The
distribution of apps is illustrated with the bar chart of Figure 2.
API usage. We collect usage of APIs related to test automation exclusively.
Whether code was needed from apps. Source code was required given the
nature of analyses performed in the study.
Fraction of open source apps. Open source apps are used exclusively.
Static analysis techniques. We analyze source code with a self-developed tool
for detection of tools, frameworks, and services’ usage in the app’s project and
the static analysis techniques provided by SonarQube to gather code issues.



To the Attention of Mobile Software Developers: Guess What, Test your App! 11

All scripts and tools developed in this work are publicly available with an open
source license: https://luiscruz.github.io/android_test_inspector/. The same
applies to the whole dataset, for the sake of reproducibility.

4 What is the prevalence of automated testing technologies in the FOSS

mobile app development community? (RQ1)

Testing is an essential task in software projects, and mobile apps are no different.
Given the specific requirements of mobile apps, conventional approaches do not
always apply. Thus, we want to assess how the FOSS mobile app development
community is addressing automated testing. In particular, we study which testing
approaches and technologies are most popular while discussing potential factors.

We compare the frequency of the automated testing technologies employed in
the development of the apps in the dataset. The state-of-the-art technologies listed
earlier in Table 1 were included, dividing them into three different categories: Unit
testing, GUI testing, and Cloud testing services. We resort to data visualizations
and descriptive statistics to analyze the frequency of technologies in the dataset.

4.1 Results

Figure 4 shows, out of 1000 apps, the number of projects using a test framework.
We include results for Unit Testing, UI Testing, and Cloud Testing frameworks. The
first bar shows the number of apps that use any test tool. About 41% of apps
have tests. We can see that unit tests are present in 39% of projects while JUnit

is the most popular tool, with 36% of projects adopting it. This means that 89%
of projects with automated tests are using JUnit.

Only 15% of projects have automated User Interface (UI) tests. Espresso is
the most used framework — almost every project with UI tests is using Espresso.
UIAutomator, Robotium, and Appium are used by a very small portion of projects
in our dataset, while AndroidViewClient, Calabash, Monkeyrunner, and PythonUIAu-

tomator are not used in any project.
With less than 3% of projects employing them, cloud testing services have not

found their way into the open source mobile app development community. In total,
28 projects use Google Firebase, whereas only 1 project uses Saucelabs. All the other
cloud test services in this study are yet to be adopted.

4.2 Discussion

Most mobile apps published in F-droid do not have automated tests. Developers
are relying on manual testing to ensure proper functioning of their apps, which is
known to be less reliable and to increase technical debt (Stolberg, 2009; Bavani,
2012; Karvonen et al., 2017).

Given their simplicity, unit tests are the most common form of tests. JUnit is
the main unit testing tool and the reason lies in the official Android Developer
documentation for tests10, which introduces JUnit as the basis for tests in Android.

10 Getting Started with Testing Android guide available at: https://goo.gl/RxmHq2 (Visited
on February 12, 2019).



12 Luis Cruz et al.

 A
ll 

Te
st

s
 A

ll 
U

ni
t T

es
ts

Ju
ni

t
An

dr
oi

dj
un

itr
un

ne
r

R
ob

oe
le

ct
ri

c
R

ob
os

po
ck

 A
ll 

U
i T

es
ts

An
dr

oi
dv

ie
w

cl
ie

nt
Ap

pi
um

C
al

ab
as

h
E

sp
re

ss
o

M
on

ke
yr

un
ne

r
Py

th
on

ui
au

to
m

at
or

R
ob

ot
iu

m
U

ia
ut

om
at

or
 A

ll 
C

lo
ud

 T
es

ts
Pr

oj
ec

tq
ua

nt
um

Q
m

et
ry

Sa
uc

el
ab

s
Fi

re
ba

se
Pe

rf
ec

to
B

itb
ar

0

50

100

150

200

250

300

350

400

N
um

be
r 

of
 p

ro
je

ct
s 

(o
ut

 o
f 1

00
0)

Unit testing GUI testing Cloud testing

Fig. 4 Number of projects per framework.

Furthermore, other test tools often rely internally on JUnit (e.g., AndroidJunitRun-

ner).

Other unit testing tools such as AndroidJunitRunner and Roboelectric do not
have a substantial adoption. These tools help running unit tests within an An-
droid environment, instead of the desktop’s JVM. This is important given the
complexity of an Android app’s lifecycle, which might affect test results. However,
many apps still do not cross that limit, providing only unit tests for parts of the
software that can run absent from the mobile system. Since many apps follow a
similar structure, based on Android’s framework enforced design patterns, easily
customizable boilerplate tests should be delivered along with those patterns.

UI tests are not so popular (15%), which can be explained by their cumbersome
maintainability reported in previous work (Gao et al., 2016; Coppola, 2017; Li
et al., 2017). Although there are many UI testing frameworks available, Espresso

is the only one with substantial adoption. This is consistent with the phenomenon
of JUnit for unit tests: Espresso is also promoted in the official Android Developer
documentation. In fact, it is distributed with the Android Software Development
Kit (SDK). Another strength is that Espresso provides mechanisms to prevent
flakiness and to simplify the creation and maintenance of tests.

Previous work has considered Espresso as the most energy efficient GUI testing
framework. The fact that these projects are already using it leaves an open door
for the creation of energy tests. On the other hand, Espresso still provides a limited
set of user interactions, which can be a barrier to high test coverage (Cruz and
Abreu, 2018).



To the Attention of Mobile Software Developers: Guess What, Test your App! 13

Unfortunately, studied cloud testing services have not reached the open source
app community. This is probably due to the recency of the introduction of these
technologies and the lack of a testing culture in mobile app development, as shown
in our results.

The good news is that we observe an increasing adoption of unit and UI tests
in the last two years. This trend can be observed by comparing our findings with
previous work (Kochhar et al., 2015); while the previous study highlights that the
prevalence of automated tests in mobile apps was merely 14%, in this work, we
observe that 41% of FOSS apps are developed with automated testing tools.

These findings provide useful implications for the development of new testing
tools and techniques. Previous work has shown the importance of creating new
types of tests for mobile apps (e.g., energy tests, security tests) (Linares-Vásquez
et al., 2017a; Muccini et al., 2012; Wang and Alshboul, 2015). Our results show
the importance of simplifying the learning curve and the project’s setup. Hence,
new types of tests should be compatible at least with JUnit and Espresso, avoiding
reinventing the wheel or complicating usage with new dependencies.

In addition, the adoption of these tools by the FOSS community is highly
sensitive to the quality and accessibility of documentation. The fact that Google

has control over the official documentation does not help third-parties to come
aboard. Perhaps the official documentation should feature more tools that are not
delivered with the Android SDK. The same concern applies to the academia that
is developing many interesting tools for mobile development and testing. Often the
lack of documentation is a big barrier to the adoption of innovative techniques by
the software industry (Gousios et al., 2016; Kochhar et al., 2015).

Only 41% of FOSS apps have automated tests. Unit testing frame-
works are the most popular, comprising 39% of projects. GUI testing
is being used by 15% of projects, while the adoption of Cloud testing
platforms is negligible (3%).

5 Are today’s mature FOSS Android apps using more automated testing

than yesterday’s? (RQ2)

Android testing tools are in constant evolution to fit the ever-changing constraints
and requirements of mobile apps. Although we are currently far from having a
satisfactory prevalence of automated testing, the evolution from past years can
provide actionable information. We study which technologies and types of test-
ing have gained momentum, and which ones are still failing to be perceived as
beneficial in FOSS mobile app projects.

Thus, we analyze how the adoption of automated testing relates to the age of
an app and the time of an app’s last update. We dig further and study the adoption
of automated testing in mature FOSS apps by years since the last update. Trends
on automated testing adoption over time are analyzed using scatter plots.



14 Luis Cruz et al.

5.1 Results

The percentage of apps that are doing tests grouped by their age is presented in
the plot of Figure 5. The data is presented from older to newer projects (i.e., 9–0
years old). The size of each circle is proportional to the number of apps with that
age (e.g., older projects have smaller circles, meaning that there are fewer projects
for those ages.). It is used to show the impact of results in each case. E.g., since
projects that are six or more years old have small circles, they comprise a small
number of projects. Hence, trends in those age groups are not significant.

0123456789
Years since first commit

0%

10%

20%

30%

40%

50%

60%

Pe
rc

en
ta

ge
 o

f p
ro

je
ct

s

Any
Unit testing
GUI testing
Cloud testing

Fig. 5 Percentage of Android apps developed in projects with test cases over the age of the
apps.

The timeline in Figure 5 shows that apps that are less than two years old
have significantly more tests than older apps. Moreover, the usage of GUI testing
frameworks has increased among apps that are under two years old.

In addition, we present in Figure 6 how new apps have been changing the
overall test automation adoption. In the past two years (shaded region) the slope
of projects with tests is higher than projects without tests. However, this recent
change is not able to change the overall pervasion of test automation: most projects
are not doing it.

Finally, we present the timeline of the adoption for different kinds of testing
techniques in Figure 7. The aforementioned trend is observable for unit testing
and GUI testing, which have a higher slope in the past two years (shaded region).

5.2 Discussion

Results show a significant increase in automated testing amongst new FOSS apps.
However, the fact that older apps have a lower adoption rate of automated test-
ing can be explained by two phenomena: 1) automated testing is becoming more
accessible to developers, who are becoming more aware of its benefits, 2) at some



To the Attention of Mobile Software Developers: Guess What, Test your App! 15

9 8 7 6 5 4 3 2 1 0
Years since first commit

0%

10%

20%

30%

40%

50%

60%

Pe
rc

en
ta

ge
 o

f p
ro

je
ct

s

Any
No tests

Fig. 6 Cumulated frequency of projects with and without tests (from 9 to 0 years old),
normalized by the total number of projects.

0123456789
Year

0%

10%

20%

30%

40%

Pe
rc

en
ta

ge
 o

f p
ro

je
ct

s

Any
Unit testing
GUI testing
Cloud testing

Fig. 7 Cumulated percentage of projects with tests (from 9 to 0 years old), normalized by
the total number of projects. All test categories are represented.

point during the lifespan of a project, developers realize that the overhead of
maintaining automated testing is not worth the benefits and decide to remove it.
While the first phenomenon reveals a positive trend, the latter is quite alarming
— automated testing does not provide a long-term solution.

Giving a better sense of which phenomenon is more likely to happen, Figure 6
reveals that automated testing has been gaining popularity in the last two years.

It is worth noting that this increase is happening in both unit testing and GUI
testing. The fact that GUI testing is gaining popularity is important — unit testing
per se does not provide means to achieve high test coverage in mobile apps. This



16 Luis Cruz et al.

increase provides more case studies for researchers to study new types of mobile
testing (e.g., energy, security, etc.).

Open source mobile developers are becoming more aware of the impor-
tance of using automated tests in their apps. This is observed more
for apps that are updated recently than those updated several years
ago.

6 How does automated testing relates to popularity metrics in FOSS

Android apps? (RQ3)

In this study, we compare popularity metrics with the adoption of automated
testing practices in FOSS Android apps. The following popularity metrics were
selected:

Number of Stars. The number of Github users that have marked the project
as favorite.
Number of Forks. The number of Github users that have created a fork of
the repository.
Number of Contributors. The number of developers that have contributed
to the project.
Number of Commits. The number of commits in the repository.
Average Rating. The average user rating from Google Play store.
Number of Ratings. The number of users rated the app on Google Play.

These metrics depend on a myriad of factors, which do not necessarily relate to
mobile app development processes. Yet, they are notable metrics that developers
do care about. Typically, developers need to drive their development process based
on multiple sources of feedback (Nayebi et al., 2018). We want to investigate
whether there is any kind of relationship between these features and automated
testing. Relationships can help motivate mobile app developers employing tests in
their projects.

To remove atypical cases, we perform an outlier detection using the Z-score
method with a threshold of three standard deviations. In addition, we perform
the normality test Shapiro-Wilk, which tests the null hypothesis that data follows
a normal distribution.

Then we apply hypothesis testing, using the non-parametric test Mann-
Whitney U, with a significance level (α) of 0.05. We may also consider a para-
metric test (e.g., the standard t-test), in case we find variables that follow a Nor-
mal distribution. In addition, since we are conducting multiple comparisons, the
Benjamini-Hochberg procedure is used to correct p-values and control false discov-
ery rate.

The independent variable is whether an app has tests in its project source code
while the dependent variables are the popularity metrics.

The hypothesis test is formulated as follows, with populations WO and W as
the population of apps without tests and the population of apps with tests,
respectively:



To the Attention of Mobile Software Developers: Guess What, Test your App! 17

H0 : P (W > WO) = P (WO > W )

H1 : P (W > WO) 6= P (WO > W )

In other words, we test the null hypothesis (H0) that a randomly selected value
from population W is equally likely to be less than or greater than a randomly
selected value from sample WO.

We perform hypothesis testing for each of the aforementioned metrics, formu-
lated as follows:

Number of Stars

H0 : a project with tests (W ) has the same number of Github stars as a project
without tests (WO).
H1 : the number of Github Stars in projects with tests is different from the
number of stars in a project without tests.
Number of Forks

H0 : a project with tests (W ) has the same number of forks as a project without
tests (WO).
H1 : the number of forks in projects with tests is different from the number of
stars in a project without tests.
Number of Contributors

H0 : projects with tests (W ) have the same number of contributors as a project
without tests (WO).
H1 : the number of forks in projects with tests is different from the number of
contributors in a project without tests.
Number of Commits

H0 : a project with tests (W ) has the same number of commits as a project
without tests (WO).
H1 : the number of commits in projects with tests is different from the number
of commits in a project without tests.
Average Rating

H0 : a project with tests (W ) has the same rating as a project without tests
(WO).
H1 : the rating of a randomly selected project with tests is different from the
rating in a project without tests.
Number of Ratings

H0 : a project with tests (W ) has the same number of rating as a project
without tests (WO).
H1 : the number of ratings of a randomly selected project with tests is different
from the number of ratings in a project without tests.

In addition, we perform effect size analyses for variables showing statistical
significance. We compute the mean difference (∆x̄ = x̄W − x̄WO), the difference
of the medians (∆Md = MdW −MdWO), and the Common Language Effect Size
(CL) (McGraw and Wong, 1992).

The mean difference (∆x̄) measures the difference between the means of apps
with tests (W ) and apps without tests (WO) for a particular popularity metric.
We compute it for being a conventional effect-size metric. In addition, since the
distribution is not necessarily normal, we compute the difference of the medians
(∆Md) between apps with tests (W ) and apps without tests (WO). Given that



18 Luis Cruz et al.

the median of a sample is the value that separates the higher half from the lower
half of the sample, ∆Md measures how different this median value is in the two
distributions.

There are nonetheless a few cases in which ∆Md does not capture differences in
the two distributions (Kerby, 2014). We complement the effect size analysis with
the Common Language (CL) measure. CL is the recommended measure when
there is no assumption on the shape of the distributions of the two samples being
tested and it is commonly used in tandem with Mann-Whitney U test (Leech and
Onwuegbuzie, 2002). One advantage of using CL to measure effect size is that it
can be easily interpreted (Brooks et al., 2014): it is the probability that the value
from an individual randomly extracted from one sample will be higher than the
value from an individual randomly extracted from another.

6.1 Results

The distributions of the popularity metrics are depicted in the boxplots of Figure 8.
The medians are represented by the orange solid lines, while the means are by
green dashed lines. The results of the normality tests Shapiro-Wilk yielded a low
p-value (p < 0.001) for all metrics. Thus, none of the metrics follows a normal
distribution, which highlights the suitability of using the Mann-Whitney U test
over the standard t-test.

Stars

10

100

1000

Forks

10

100

1000

Contributors
1

10

100

Commits
1

10

100

1000

Rating Value
1

2

3

4

5

Rating Count

10

1000

100000

Fig. 8 Boxplots with the distributions of the popularity metrics. Note that the y-axis is in
log-scale for all metrics but ratings.

Hypothesis testing results are shown in Table 2 along with the effect size anal-
ysis: mean difference (∆x̄), difference of median (∆Md), and CL expressed in
percentage. The bigger the effect size is, the bigger is the metric for apps with



To the Attention of Mobile Software Developers: Guess What, Test your App! 19

tests. The effect size analysis is only relevant in cases with statistical significance,
which are highlighted in bold text.

Table 2 Statistical analysis of the impact of tests on the popularity of apps.

p-value ∆x̄ ∆Md CL (%)
Stars 0.2130 54.78 3.00 52.74%
Forks 0.4525 11.39 1.00 51.40%
Contributors 0.0052 2.17 0.00 55.80%
Commits 0.0008 247.58 49.00 57.13%
Rating Value 0.0835 0.05 0.05 54.77%
Rating Count 0.2465 −894.26 −56.00 47.03%

There is statistical evidence that FOSS Android apps with tests are expected
to have more commits and more contributors. Note, however, that this evidence
does not imply that tests boost these variables. Conclusions must analyze the
causality of this relationship (i.e., whether tests are cause or consequence) and the
fact that there are many external variables that are expected to have a significant
impact (e.g., target users, originality of idea, design, marketing, etc.). Nonethe-
less, no statistical significance was found between having automated tests and the
number of GitHub stars, forks and ratings on Google Play.

Projects with tests have on average more 248 commits in the whole project.
The CL effect size is small but substantial: the probability of a project with tests
having more commits than a project without tests is 57%. Although the number
of commits increases, one can argue that the number of commits can be related
to overhead created by tests maintenance.

Projects with tests have a small but substantial CL effect size: the probability
that a project with tests will have more contributors is 56%. Nevertheless, the
direction of this relationship cannot be assessed with these results — i.e., there is
no evidence of whether the presence of tests is a consequence of the high number of
contributors in the project or, in contrary, it is a way of attracting more developers
to contribute.

Tests and Contributors: developers’ perception? We decided to conduct a follow-
up study to assess the developers’ perception of whether tests can lead to more
contributors. We contacted 343 mobile open source developers to answer a survey
with two close-ended questions:

1. Do you think that more tests benefit/attract new-comers?

Possible answers were: Yes; No; and Maybe.
2. Is the presence of tests a reason or a consequence of a big community of contribu-

tors?

Possible answers were: Most likely a reason; Most likely a consequence; Both

equally; and No impact.

Respondents had an additional box where they could optionally leave their
comments or feedback on the subject. Developers were selected by being active
in an open source mobile application available on GitHub. In the end, we had 44
responses. Data collected was anonymized and it is available online11.

11 Questionnaire responses are available online: https://goo.gl/6CFDb9



20 Luis Cruz et al.

As shown in the pie chart of Figure 9, 45.5% of our respondents believe that
tests help new developers to contribute in a project, while 38.6% are not sure, and
only 15.9% disagree with the statement. The pie chart of Figure 10 shows that,
despite the recognized improvement from having tests, the majority of respondents
believe that the presence of tests is more likely a consequence from having a big
community of contributors (43.2%). A smaller part of respondents (25%) believe
that the presence tests and the size of the community do not affect each other
— i.e., they both depend on a different variable. Other respondents believe both
variables affect each other (22.7%), while only 9.1% reckon tests as the cause.

Yes

45.5%

No
15.9%

Maybe

38.6%

Fig. 9 Do tests attract newcomers?

Most likely a reason

9.1%

Most likely a consequence

43.2%

Both equally

22.7%

No impact

25%

Fig. 10 Tests: cause or consequence of a big community?

Feedback submitted by some developers provided some insights on their per-
sonal experience. Some developers pointed out that the adoption of CI/CD is
probably “more influential than the actual tests”. Other developers emphasized
the importance of having tests as “a good starting point for newcomers to get
familiar with the project’s code and its features”. Finally, some developers state
that the “maintenance burden of automated tests is really high” and that they
can block major refactorings in software projects.

6.2 Discussion

Results show that FOSS Android projects with tests have more commits and
more contributors. The increase in the number of commits can be explained by an
overhead of commits induced by the maintenance and configuration of tests.



To the Attention of Mobile Software Developers: Guess What, Test your App! 21

Responses to the questionnaire show that the presence of tests is more likely a
consequence of having a big community. In addition, tests can help new developers
contribute to the project. Since one of the main concerns in open source projects is
to foster the community to contribute12, the importance of tests for this purpose
cannot be discarded. Conventionally, maintainers of open source projects target
this goal by inviting contributors, providing social and communication tools, and
making sure that instructions on how to contribute are well documented. These
results show that tests should also be part of their agenda.

This relationship is consistent with previous work. Automated tests help new
developers be more confident about the quality of their contributions (Gousios
et al., 2016). Contributors are able to create Pull Requests (PR) to a project with
a reasonable level of confidence that other parts of the software will not break.
The same applies to the process of validating a PR. Integrators usually have some
barriers when accepting contributions from newcomer developers (Gousios et al.,
2015). The presence of automated tests helps reduce that barrier, and contributions
with tests are more likely to be accepted (Gousios et al., 2015). Another aspect of
automated tests that contributes to this trend is the reported ability to provide
up-to-date documentation of the software (Van Deursen, 2001; Beck, 2000).

Previous work that shows that app store’s ratings are not able to capture the
quality of apps (de Langhe et al., 2016; Ruiz et al., 2017). Our results show that
this is also the case for tests: there is no relationship between using tests and rating
on Google Play.

Our findings have direct implications for different stakeholders of mobile soft-
ware projects. Developers have to start using automated tests in their code in
order to assure quality in their contributions. Open source project maintainers
must promote a testing culture to engage the community in their projects.

Automated testing is important to foster the community to contribute.
There is statistical evidence that FOSS Android projects with tests
have more contributors and more commits. Number of GitHub Stars,
Github Forks and ratings on Google Play did not reveal any signifi-
cant impact.

7 How does automated testing affect code issues in FOSS Android apps?

(RQ4)

Code issues are related to potential vulnerabilities of software. It is a major concern
of developers to ship software with a minimal number of code issues. We study
whether automated testing can help developers deploy mobile app software with
fewer code issues.

We use the issues detected by the static analysis Sonar tool as a proxy of
software code issues. We apply Sonar to our dataset of 1000 Android apps. As
mentioned in Section 3, Sonar issues are divided into four categories, based on

12 Five best practices in open source: external engagement by Ben Balter: https://goo.gl/
BQRZBa (Visited on February 12, 2019).



22 Luis Cruz et al.

the severity of their impact. We evaluate the number of issues normalized for the
number of files in the project (I ′(p)).

We apply the same approach used in Section 6: we use hypothesis testing
with the Mann-Whitney U test using a significance level (α) of 0.05. Benjamini-
Hochberg procedure is used to correct p-values since four tests are performed
in the same sample. Mean difference (∆x̄), difference of median (∆Md), relative
difference (∆Md

MdW
), and CL are used to analyze effect size.

7.1 Results

We successfully collected code issue reports from 967 apps. It was not possi-
ble to collect data from 33 apps: Sonar failed due to characters invalid with
UTF-8 encoding. This was the case of the reading app FBReaderJ and its file
ZLConfigReader.java that contained characters that not even Github is able to
render13. Since these apps consisted of a small portion of our dataset (3%), we
decided to leave them out of this part of the study.

Table 3 presents descriptive statistics of the number of code issues per file I ′(p)
for each level of severity — size of the sample (N), median (Md), mean (x̄), and
standard deviation (s). The table also presents the results of normality tests with
the p-values for Shapiro-Wilk tests (X ∼ N), showing that none of the metrics
follows a normal distribution. Statistics are presented for both apps with tests
(W ) and apps without tests (WO).

Table 3 Descriptive statistics of code issues on apps with (W ) and without (WO) tests

Tests N Md x̄ s X ∼ N

Blocker
W 398 0.00 0.02 0.04 p < 0.0001
WO 569 0.00 0.05 0.59 p < 0.0001

Critical
W 398 0.24 0.34 0.39 p < 0.0001
WO 569 0.26 0.48 0.90 p < 0.0001

Major
W 398 0.50 0.73 0.80 p < 0.0001
WO 569 0.52 0.84 1.09 p < 0.0001

Minor
W 398 0.61 0.87 0.93 p < 0.0001
WO 569 0.73 1.27 2.12 p < 0.0001

Figure 11 illustrates the distribution of the I ′(p) in projects with tests (blue
line, hatch fill) and without tests (red line, empty fill) for different types of issues.
The mean for each group is depicted with a dashed green line, while the median
with a solid orange line. Types of issues with a statistically significant difference
between W and WO are highlighted with thicker lines. Results show that projects
with tests have significantly less minor code issues than projects without tests.

Table 4 reports the resulting p-values and computes the effect-size metrics:
mean difference (∆x̄), difference of median (∆Md), relative difference (∆Md

MdW
), and

CL.
The number of minor issues per file increases significantly in projects without

tests. The difference of median shows that projects without tests are expected to

13 Example of a source code file incompatible with Sonar tool: https://git.io/fxNg9 (Visited
on February 12, 2019).



To the Attention of Mobile Software Developers: Guess What, Test your App! 23

Blocker Critical Major Minor
Severity of issues

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

N
um

be
r 

of
 is

su
es

 p
er

 fi
le

With Tests
Without Tests

Fig. 11 Comparison of the number of issues per file in projects with and without tests. Green
dashed lines in each box represent the mean value, while orange solid lines represent the
median.

have 0.11 more minor issues per file (increase of 18%). Furthermore, as reported
with the CL effect-size, projects without tests have more minor issues than projects
with tests with a probability of 54%. The number of issues for higher severity levels
is not significantly affected.

Table 4 Statistical analysis of the impact of tests in mobile software code issues

Severity p-value ∆x̄ ∆Md ∆Md
MdW

(%) CL (%)

Blocker 0.1643 0.0337 0.0014 48 52.09%
Critical 0.1150 0.1337 0.0234 9 52.97%
Major 0.2939 0.1130 0.0157 3 51.02%
Minor 0.0440 0.3940 0.1127 18 54.32%

7.2 Discussion

Results show that there is a statistically significant and substantial relationship be-
tween using automated testing and the number of minor code issues that appear in
the project. FOSS Android projects without automated testing have significantly
more minor code issues. Given that only 41% of apps in this study have automated
tests, mobile developers need to be aware of the importance of testing their apps.

On the other hand, although the normalized number of blocker, critical, and
major bugs is higher for apps without tests than those with tests, the difference
is not statistically significant. Other alternatives, such as manual testing, code



24 Luis Cruz et al.

inspection, or static analysis, are probably preventing such issues. Our sample size
may also not be large enough to make the result to be statistically significant.

There is statistical evidence that FOSS Android projects without tests
have 18% more minor code issues per file. In our sample, projects
without tests also had more code issues for other severity levels: major
(3%), critical (9%), and blocker (48%).

8 What is the relationship between the adoption of CI/CD and automated

testing? (RQ5)

CI/CD has been proved to be beneficial in software projects and to have even
better results when employed along with automated testing Hilton et al. (2016);
Zhao et al. (2017). Thus, we study whether mobile app developers are using CI/CD
in its full potential. Moreover, we delve into how mobile app projects set themselves
apart from conventional software projects in terms of CI/CD adoption.

To answer this research question, we start by comparing the adoption of the
different studied CI/CD technologies in Android FOSS projects. In addition, we
compare the frequency of projects that have adopted one of the studied CI/CD
tools with the frequency of projects using automated testing.

For this analysis, we resort to data visualizations. To validate the relationship
between automated testing and CI/CD we use Pearson’s chi-squared test with
a significance level of 0.05. This test was selected for being commonly used to
compare binary variables.

8.1 Results

We first analyze which apps are using CI/CD pipelines in their development prac-
tices. The distribution of CI/CD pipelines among these platforms is given in Fig-
ure 12. Travis CI is the most popular platform with 249 apps using it (25%),
followed by Circle CI, being used by 2% of apps. However, in total, only 27% have
adopted CI/CD.

The relationship between the prevalence of CI/CD and prevalence of tests is
depicted by the mosaic plot in Figure 13. The size of each area is proportional
to the number of apps in each group. Nearly 50% of apps are not having tests
nor adopting CI/CD (region A). 26% of apps, despite having tests, are not using
CI/CD (region B). 12% of apps are using CI/CD but are not doing any automated
tests (region C). Only 15% of apps are using CI/CD effectively, with automated
tests (region D). In addition, the mosaic plot suggests that automated testing is
more prevalent in projects with CI/CD than projects without. This is confirmed
by the Pearson’s chi-squared test: χ2 = 31.48, p = 2.009e-8.

Online coverage trackers are useful tools that play well with CI/CD platforms.
They help ensure that the code is fully covered. Nevertheless, only 19 projects
are using it — 9 use Coveralls and 12 use Codecov, having 2 projects using both
platforms. However, only 4 have line coverage above 80%, and no meaningful
results can be extrapolated.



To the Attention of Mobile Software Developers: Guess What, Test your App! 25

Al
l

Tr
av

is
 C

I

C
ir

cl
e 

C
I

Ap
p 

Ve
yo

r

C
od

es
hi

p

C
od

ef
re

sh

W
er

ck
er

0

50

100

150

200

250

N
um

be
r 

of
 a

pp
s 

(o
ut

 o
f 1

00
0)

266
249

22
2 0 0 0

Fig. 12 Android apps using CI/CD platforms.

No tests With tests

With CI/CD

No CI/CD

C. No Tests but with CI/CD
(11.9%)

A. No Tests and no CI/CD
(47.5%)

D. With Tests and
with CI/CD

(14.7%)

B. With Tests but
no CI/CD
(25.9%)

Fig. 13 Relationship between apps using CI/CD and apps using tests.

8.2 Discussion

CI/CD is not as widely adopted by mobile app developers as compared to devel-
opers of general OSS projects — only 26% of apps have adopted CI/CD services
while the adoption in general open source software hosted by GitHub is 40% (Hilton
et al., 2016).

There are 12% of apps that, despite using CI/CD, do not have automated tests.
In practice, these projects are only using CI/CD tools to run static analyses. Yet,
they rely on a pipeline that requires an approver to manually build and test the
app.

The fact that there are projects that have tests but did not adopt CI/CD
(26%) is also concerning. One of the main strengths of adopting CI/CD is im-
proving software quality through test automation (Zhao et al., 2017). Although



26 Luis Cruz et al.

CI/CD services have made a good work in simplifying the configuration of Android
specific requirements (e.g., SDK version, emulator, dependencies, etc.), developers
have reported that the main obstacle in adopting CI/CD in a project is having
developers who are not familiar with it (Hilton et al., 2016). Nevertheless, since
these projects are already using automated tests, they could potentially benefit
from a CI/CD pipeline with little effort. More research needs to be conducted to
assess why mobile developers are not adopting CI/CD in their projects.

Travis CI and Circle CI are the most used CI/CD services, as expected from
previous results for other types of software (Hilton et al., 2016). Although the
other platforms have a well documented support for Android, they are not being
used by the community.

Even more surprising is the fact that, from the 147 apps with both CI/CD
and tests, only 19 are actually promoting full test coverage with coverage tracking
services. This suggests that coverage is not a top priority metric for mobile devel-
opers, which is in sync with concerns by Gao et al. who have reported the need
for coverage criteria to meet the idiosyncrasies of mobile app testing (Gao et al.,
2014). In particular, Coverall and Codecov platforms only report line coverage. Dif-
ferent coverage criteria, such as event/frame coverage, would be more suitable in
the context of mobile apps.

More education and training is needed to get full benefits of CI/CD for mobile
apps. Developers that are already performing automated tests in their apps should
explore the integration of a CI/CD pipeline in their projects. This is also a good
opportunity for newcomer developers willing to start contributing to open source
projects.

CI/CD in mobile app development is not as prevalent as in other plat-
forms; Automated testing is more prevalent in projects with CI/CD.

9 Hall of Fame

We have selected a set of apps from our dataset that we consider good candi-
dates for studying best practices from the mobile app development community.
We perform a systematic selection by choosing projects that perform unit tests,
UI tests and are using CI/CD. In total, 54 apps satisfy these requirements14. We
present in Table 5 one app for each category based on the popularity of that app
among developers, using the number GitHub Stars as a proxy. Some categories,
namely Games, Money, and Phone & SMS, did not have any app that meets the
requirements.

Note, however, that although these projects follow best practices, they are not
necessarily the ones with the highest ratings (e.g., rating in Google Play, number
of Forks in Github). The success of apps also depends on a myriad of other factors.
Nevertheless, the impact of best practices is not negligible and for that reason,
these projects can be used as role models for new projects or subjects for case
studies for further research.

14 The whole set of apps in the Hall of Fame can be accessed online: https://luiscruz.
github.io/android_test_inspector/.



To the Attention of Mobile Software Developers: Guess What, Test your App! 27

Table 5 Hall of fame

Category Organization Project Name
Internet k9mail k-9
Multimedia TeamNewPipe NewPipe
Writing federicoiosue Omni-Notes
Theming Neamar KISS
Time fossasia open-event-android
Sports & Health Glucosio android
Navigation grote Transportr
System d4rken reddit-android-appstore
Reading raulhaag MiMangaNu
Security 0xbb otp-authenticator
Science & Education EvanRespaut Equate
Connectivity genonbeta TrebleShot
Development Adonai Man-Man
Graphics jiikuy velocitycalculator

10 Threats to validity

Construct validity Code issues collected with SonarQube are used to measure the
quality of code. Some projects might not follow common development guidelines
due to specific requirements. Thus, generic static rules might not be able to capture
the quality of such projects. Nevertheless, we expect that this is the case of a
minimal number of apps and results are not affected. Metrics from Google Play and
GitHub are used as proxies to measure user satisfaction, and popularity of apps.
These metrics are affected by a number of factors and not always are sufficiently
dynamic to cope with changes in the app (Ruiz et al., 2017).

Furthermore, the online coverage trackers investigated in this study only sup-
port line coverage. Coverage metrics for events or UI frames are more suitable for
mobile applications. These metrics were not evaluated as they are not available
in the state-of-the-art online coverage trackers. Finally, we did not consider AIG
techniques since they are more advanced and thus are not popularly used in mobile
app development yet.

Internal validity The usage of a test framework or service was assessed through a
self-developed automatic tool based on static analysis and Web requests to service’s
APIs. To validate the accuracy of our tool we have manually labeled a random
sample of 50 apps and compared the results. Our tool has successfully passed our
validation with no false positives and no false negatives, but we understand that
some corner cases may not have been checked yet. The same applies to the static
analysis tool SonarQube used to collect code issues — it provides an approximation
of the actual set of code issues in a project. Some issues detected by SonarQube may
be false positives or may not generalize to other, distinct projects. Nevertheless,
we argue such cases are rare and they are not expected to have a significant effect
in results.

External validity Our work has focused on free and open source apps. Our 1000-app
dataset comprises a good proportion of these apps that are currently available for
Android users. Findings in this work are likely to generalize to types of apps with
a caveat: private companies usually have a different approach from open source



28 Luis Cruz et al.

organizations on software testing (Joorabchi et al., 2013). We did not include test-
ing services without a free plan for open source projects; Paid apps have different
budgets and might be more willing to use paid services in their projects. Legal and
copyright restrictions do not allow us to scope apps with commercial licenses. This
is a known barrier for research based on app store analysis (Krutz et al., 2015;
Nagappan and Shihab, 2016; Martin et al., 2017).

The adoption of CI/CD is based on a subset of CI/CD services available, as
described in Section 3. This subset is equivalent to the one used by Hilton et al.
to study CI/CD adoption in general software projects (Hilton et al., 2016).

11 Conclusion

Testing is a crucial activity during the software development lifecycle to ascertain
the delivery of high quality (mobile) software. This study is about testing practices
in the mobile development world. In particular, we investigated working habits and
challenges of mobile app developers with respect to testing.

A key finding of our large-scale study, using 1000 Android apps, is that mobile
apps are still tested in a very ad hoc way, if tested at all. We show that, as in
other types of software, testing increases the quality of apps (demonstrated in the
number of code issues). The adoption of tests has increased over the last two years
and that Espresso and JUnit are the most popular frameworks. Furthermore, we
find that availability of tests plays a positive role in engaging the community to
contribute to open source mobile app projects. Yet another relevant finding of our
study is that CI/CD pipelines are rare in the mobile app world (only 26% of the
apps are developed in projects leveraging CI/CD) – we argue that one of the main
reasons is due to the lack of a good set of test cases and adoption of automatic
testing. We have discussed possible reasons behind the observed phenomena and
some implications for practitioners and researchers.

As future work, our empirical study can be expanded in several ways: 1) study
how mobile app projects address tests for particular types of requirements (e.g.,
security, privacy, energy efficiency, etc.); 2) based on the test practices collected
from mobile app repositories, provide a set of best practices to serve as rule of
thumb for other developers; and 3) verify that these findings also hold for other
platforms.

Acknowledgment

This work is financed by the ERDF — European Regional Development Fund
through the Operational Program for Competitiveness and Internationalization
- COMPETE 2020 Program and by National Funds through the Portuguese
funding agency, FCT - Fundação para a Ciência e a Tecnologia with reference
UID/CEC/50021/2019, and within projects GreenLab (POCI-01-0145-FEDER-
016718) and FaultLockerRef (PTDC/CCI-COM/29300/2017). Luis Cruz is spon-
sored by an FCT scholarship grant number PD/BD/52237/2013.



To the Attention of Mobile Software Developers: Guess What, Test your App! 29

References

M. Linares-Vásquez, K. Moran, and D. Poshyvanyk, “Continuous, evolution-
ary and large-scale: A new perspective for automated mobile app testing,” in
33rd IEEE International Conference on Software Maintenance and Evolution (IC-

SME’17), page to appear, 2017.
C. Hu and I. Neamtiu, “Automating GUI testing for android applications,” in

Proceedings of the 6th International Workshop on Automation of Software Test.
ACM, 2011, pp. 77–83.

G. P. Picco, C. Julien, A. L. Murphy, M. Musolesi, and G.-C. Roman, “Software
engineering for mobility: reflecting on the past, peering into the future,” in
Proceedings of the on Future of Software Engineering. ACM, 2014, pp. 13–28.

K. Moran, M. Linares-Vásquez, and D. Poshyvanyk, “Automated GUI testing of
Android apps: from research to practice,” in Proceedings of the 39th International

Conference on Software Engineering Companion. IEEE Press, 2017, pp. 505–506.
Y. Wang and Y. Alshboul, “Mobile security testing approaches and challenges,” in

Mobile and Secure Services (MOBISECSERV), 2015 First Conference on. IEEE,
2015, pp. 1–5.

A. K. Maji, K. Hao, S. Sultana, and S. Bagchi, “Characterizing failures in mobile
oses: A case study with android and symbian,” in Software Reliability Engineering

(ISSRE), 2010 IEEE 21st International Symposium on. IEEE, 2010, pp. 249–258.
R. N. Zaeem, M. R. Prasad, and S. Khurshid, “Automated generation of oracles for

testing user-interaction features of mobile apps,” in Software Testing, Verification

and Validation (ICST), 2014 IEEE Seventh International Conference on. IEEE,
2014, pp. 183–192.

H. Khalid, M. Nagappan, E. Shihab, and A. E. Hassan, “Prioritizing the devices to
test your app on: A case study of android game apps,” in Proceedings of the 22nd

ACM SIGSOFT International Symposium on Foundations of Software Engineering.
ACM, 2014, pp. 610–620.

M. Nayebi, B. Adams, and G. Ruhe, “Release practices for mobile apps–what do
users and developers think?” in Software Analysis, Evolution, and Reengineering

(SANER), 2016 IEEE 23rd International Conference on, vol. 1. IEEE, 2016, pp.
552–562.

H. Muccini, A. Di Francesco, and P. Esposito, “Software testing of mobile ap-
plications: Challenges and future research directions,” in Proceedings of the 7th

International Workshop on Automation of Software Test. IEEE Press, 2012, pp.
29–35.

P. S. Kochhar, F. Thung, N. Nagappan, T. Zimmermann, and D. Lo, “Under-
standing the test automation culture of app developers,” in Software Testing,

Verification and Validation (ICST), 2015 IEEE 8th International Conference on.
IEEE, 2015, pp. 1–10.

J. Visser, S. Rigal, R. van der Leek, P. van Eck, and G. Wijnholds, Building Main-

tainable Software, Java Edition: Ten Guidelines for Future-Proof Code. ” O’Reilly
Media, Inc.”, 2016.

D. E. Krutz, M. Mirakhorli, S. A. Malachowsky, A. Ruiz, J. Peterson, A. Filipski,
and J. Smith, “A dataset of open-source android applications,” in Mining Soft-

ware Repositories (MSR), 2015 IEEE/ACM 12th Working Conference on. IEEE,
2015, pp. 522–525.



30 Luis Cruz et al.

M. Hilton, T. Tunnell, K. Huang, D. Marinov, and D. Dig, “Usage, costs, and ben-
efits of continuous integration in open-source projects,” in Automated Software

Engineering (ASE), 2016 31st IEEE/ACM International Conference on. IEEE,
2016, pp. 426–437.

Y. Zhao, A. Serebrenik, Y. Zhou, V. Filkov, and B. Vasilescu, “The impact of
continuous integration on other software development practices: A large-scale
empirical study,” 32nd IEEE/ACM International Conference on Automated Soft-

ware Engineering, 2017.
W. Martin, F. Sarro, Y. Jia, Y. Zhang, and M. Harman, “A survey of app store

analysis for software engineering,” IEEE transactions on software engineering,
vol. 43, no. 9, pp. 817–847, 2017.

F.-X. Geiger, I. Malavolta, L. Pascarella, F. Palomba, D. Di Nucci, and A. Bac-
chelli, “A graph-based dataset of commit history of real-world android apps,” in
Proceedings of the 15th International Conference on Mining Software Repositories,

MSR. ACM, New York, NY, 2018.
L. Pascarella, F.-X. Geiger, F. Palomba, D. Di Nucci, I. Malavolta, and A. Bac-

chelli, “Self-reported activities of android developers,” in 5th IEEE/ACM Inter-

national Conference on Mobile Software Engineering and Systems, New York, NY,
2018.

T. Das, M. Di Penta, and I. Malavolta, “A quantitative and qualitative investiga-
tion of performance-related commits in android apps,” in Software Maintenance

and Evolution (ICSME), 2016 IEEE International Conference on. IEEE, 2016,
pp. 443–447.

D. B. Silva, A. T. Endo, M. M. Eler, and V. H. Durelli, “An analysis of automated
tests for mobile android applications,” in Computing Conference (CLEI), 2016

XLII Latin American. IEEE, 2016, pp. 1–9.
R. Coppola, M. Morisio, and M. Torchiano, “Scripted gui testing of android apps:

A study on diffusion, evolution and fragility,” in Proceedings of the 13th Interna-

tional Conference on Predictive Models and Data Analytics in Software Engineering.
ACM, 2017, pp. 22–32.

V. Cosentino, J. L. C. Izquierdo, and J. Cabot, “Findings from github: meth-
ods, datasets and limitations,” in Mining Software Repositories (MSR), 2016

IEEE/ACM 13th Working Conference on. IEEE, 2016, pp. 137–141.
C. Bird, P. C. Rigby, E. T. Barr, D. J. Hamilton, D. M. German, and P. Devanbu,

“The promises and perils of mining git,” in Mining Software Repositories, 2009.

MSR’09. 6th IEEE International Working Conference on. IEEE, 2009, pp. 1–10.
L. Corral and I. Fronza, “Better code for better apps: a study on source code

quality and market success of android applications,” in Proceedings of the Second

ACM International Conference on Mobile Software Engineering and Systems. IEEE
Press, 2015, pp. 22–32.

M. Linares-Vásquez, C. Bernal-Cárdenas, K. Moran, and D. Poshyvanyk, “How
do developers test android applications?” in 33rd IEEE International Conference

on Software Maintenance and Evolution (ICSME’17), page to appear, 2017.
S. R. Choudhary, A. Gorla, and A. Orso, “Automated test input generation for

Android: Are we there yet? (E),” in Automated Software Engineering (ASE), 2015

30th IEEE/ACM International Conference on. IEEE, 2015, pp. 429–440.
D. Amalfitano, N. Amatucci, A. M. Memon, P. Tramontana, and A. R. Fasolino,

“A general framework for comparing automatic testing techniques of android
mobile apps,” Journal of Systems and Software, vol. 125, pp. 322–343, 2017.



To the Attention of Mobile Software Developers: Guess What, Test your App! 31

X. Zeng, D. Li, W. Zheng, F. Xia, Y. Deng, W. Lam, W. Yang, and T. Xie,
“Automated test input generation for android: Are we really there yet in an
industrial case?” in Proceedings of the 2016 24th ACM SIGSOFT International

Symposium on Foundations of Software Engineering. ACM, 2016, pp. 987–992.
P. S. Kochhar, T. F. Bissyandé, D. Lo, and L. Jiang, “Adoption of software test-

ing in open source projects — A preliminary study on 50,000 projects,” in
Software Maintenance and Reengineering (CSMR), 2013 17th European Conference

on. IEEE, 2013, pp. 353–356.
——, “An empirical study of adoption of software testing in open source projects,”

in Quality Software (QSIC), 2013 13th International Conference on. IEEE, 2013,
pp. 103–112.

J. Kaasila, D. Ferreira, V. Kostakos, and T. Ojala, “Testdroid: Automated Remote
UI Testing on Android,” in Proceedings of the 11th International Conference on

Mobile and Ubiquitous Multimedia, ser. MUM ’12. New York, NY, USA: ACM,
2012, pp. 28:1–28:4.

S. Stolberg, “Enabling agile testing through continuous integration,” in Agile Con-

ference, 2009. AGILE’09. IEEE, 2009, pp. 369–374.
R. Bavani, “Distributed agile, agile testing, and technical debt,” IEEE software,

vol. 29, no. 6, pp. 28–33, 2012.
T. Karvonen, W. Behutiye, M. Oivo, and P. Kuvaja, “Systematic literature review

on the impacts of agile release engineering practices,” Information and Software

Technology, 2017.
Z. Gao, Z. Chen, Y. Zou, and A. M. Memon, “Sitar: Gui test script repair,” IEEE

transactions on software engineering, vol. 42, no. 2, pp. 170–186, 2016.
R. Coppola, “Fragility and evolution of android test suites,” in Proceedings of the

39th International Conference on Software Engineering Companion. IEEE Press,
2017, pp. 405–408.

X. Li, N. Chang, Y. Wang, H. Huang, Y. Pei, L. Wang, and X. Li, “ATOM:
Automatic maintenance of GUI test scripts for evolving mobile applications,”
in Software Testing, Verification and Validation (ICST), 2017 IEEE International

Conference on. IEEE, 2017, pp. 161–171.
L. Cruz and R. Abreu, “Measuring the energy footprint of mobile testing frame-

works,” in Software Engineering Companion (ICSE-C), 2018 IEEE/ACM 38th In-

ternational Conference on. IEEE, 2018.
G. Gousios, M.-A. Storey, and A. Bacchelli, “Work practices and challenges in

pull-based development: The contributor’s perspective,” in Software Engineering

(ICSE), 2016 IEEE/ACM 38th International Conference on. IEEE, 2016, pp.
285–296.

M. Nayebi, H. Cho, and G. Ruhe, “App store mining is not enough for app im-
provement,” Empirical Software Engineering, pp. 1–31, 2018.

K. O. McGraw and S. Wong, “A common language effect size statistic.” Psycho-

logical bulletin, vol. 111, no. 2, p. 361, 1992.
D. S. Kerby, “The simple difference formula: An approach to teaching

nonparametric correlation,” Comprehensive Psychology, vol. 3, p. 11.IT.3.1,
2014. [Online]. Available: https://doi.org/10.2466/11.IT.3.1

N. L. Leech and A. J. Onwuegbuzie, “A call for greater use of nonparametric
statistics.” 2002.

M. E. Brooks, D. K. Dalal, and K. P. Nolan, “Are common language effect sizes
easier to understand than traditional effect sizes?” Journal of Applied Psychology,



32 Luis Cruz et al.

vol. 99, no. 2, p. 332, 2014.
G. Gousios, A. Zaidman, M.-A. Storey, and A. Van Deursen, “Work practices and

challenges in pull-based development: the integrator’s perspective,” in Proceed-

ings of the 37th International Conference on Software Engineering-Volume 1. IEEE
Press, 2015, pp. 358–368.

A. Van Deursen, “Program comprehension risks and opportunities in extreme pro-
gramming,” in Reverse Engineering, 2001. Proceedings. Eighth Working Conference

on. IEEE, 2001, pp. 176–185.
K. Beck, Extreme programming explained: embrace change. addison-wesley profes-

sional, 2000.
B. de Langhe, P. M. Fernbach, and D. R. Lichtenstein, “Navigating by the Stars:

Investigating the Actual and Perceived Validity of Online User Ratings,” Journal

of Consumer Research, vol. 42, no. 6, pp. 817–833, 2016.
I. M. Ruiz, M. Nagappan, B. Adams, T. Berger, S. Dienst, and A. Hassan, “An

examination of the current rating system used in mobile app stores,” IEEE

Software, 2017.
J. Gao, X. Bai, W.-T. Tsai, and T. Uehara, “Mobile application testing: a tutorial,”

Computer, vol. 47, no. 2, pp. 46–55, 2014.
M. E. Joorabchi, A. Mesbah, and P. Kruchten, “Real challenges in mobile

app development,” in Empirical Software Engineering and Measurement, 2013

ACM/IEEE International Symposium on. IEEE, 2013, pp. 15–24.
M. Nagappan and E. Shihab, “Future trends in software engineering research for

mobile apps,” in Software Analysis, Evolution, and Reengineering (SANER), 2016

IEEE 23rd International Conference on, vol. 5. IEEE, 2016, pp. 21–32.


