
Performance-based Guidelines for Energy Efficient
Mobile Applications

Luis Cruz
University of Porto

HASLab/INESC TEC
Porto, Portugal

luiscruz@fe.up.pt

Rui Abreu
Instituto Superior Técnico, University of Lisbon

INESC-ID
Lisbon, Portugal

rui@computer.org

Abstract—Mobile and wearable devices are nowadays the de
facto personal computers, while desktop computers are becoming
less popular. Therefore, it is important for companies to de-
liver efficient mobile applications. As an example, Google has
published a set of best practices to optimize the performance
of Android applications. However, these guidelines fall short to
address energy consumption. As mobile software applications
operate in resource-constrained environments, guidelines to build
energy efficient applications are of utmost importance. In this
paper, we studied whether or not eight best performance-based
practices have an impact on the energy consumed by Android
applications. In an experimental study with six popular mobile
applications, we observed that the battery of the mobile device
can last up to approximately an extra hour if the applications are
developed with energy-aware practices. This work paves the way
for a set of guidelines for energy-aware automatic refactoring
techniques.

Index Terms—Green Computing; Mobile Computing; Anti
patterns;

I. INTRODUCTION

Energy consumption in mobile applications is a concern
for both users and developers. Applications that drain battery
life of mobile devices can ruin user experience, and therefore
tend to be removed, unless they offer a crucial feature to
users. Thus, any improvement in the energy efficiency of an
application has a great impact on its success. Nevertheless,
mobile application development is usually feature oriented.
This means that nonfunctional requirements such as energy
efficiency might not be so perceivable during the development
phase. In that case, energy inefficiencies are spotted only after
publishing the application to users [1].

A study on mobile application usage patterns have collected
data from 4,125 users between August, 2010 and January,
2011 [2]. In this study, users spent on average one hour per day
interacting with their mobile device. Recent studies revealed
that in 2016 the usage has increased to 2.4 hours per day and
3.75 hours for heavy users1. This trend suggests that users will
keep increasing mobile phone usage and consequently having
energy efficient software is an important matter.

Energy consumption can be affected by many factors such
as temperature, background tasks, and active components.

1Dscout’s 2016 Mobile Touches Report (visited in March 3, 2017): https:
//pages.dscout.com/mobile-touches-download-form

Different executions of the same code may have different
consumption. Thus, the impact of energy improvements is
hard to measure and time consuming. Previous work shows
the lack of knowledge developers have on energy efficiency
in mobile applications [3]. Having a notion of practices that
benefit energy efficiency would help developers ship more
efficient applications without having too much hassle profiling
energy consumption.

Energy efficiency can also be seen as a performance prob-
lem. It is sort of expected that a faster execution consumes
less energy. However, this is not always true [4, 5, 6, 7]. For
instance, mobile architectures have different types of Central
Processing Units (CPU): fast but power-hungry CPUs are used
for heavier tasks, and slow CPUs that consume less energy
are used for simpler tasks (e.g., heterogeneous architecture
big.LITTLE2 used in mobile devices) [8]. Another example is
the tail power states of components in mobile devices. This
phenomenon consists in components in a high power state up
to several seconds after finishing a task [9].

Heavy graphics processing is a source of unnecessary
energy consumption in Android applications, according to a
study that analyzed the StackOverflow community [10]. User
interface (UI) is prone to inefficiencies that developers might
not be aware of. A common problem is illustrated in Figure 1.
UI views are described using several nested layouts that will
be drawn on top of each other. If each of these layouts has a
background color, the same pixel has to be drawn several times
on each refresh. This code smell is known as Overdraw. Since
views are designed using XML notation, this anti-pattern can
hardly be spotted by analyzing the execution trace or the Java
source code. Thus, in this study we have analyzed anti-patterns
in both Java and XML sources.

We have measured the impact of eight Android best prac-
tices in terms of energy consumption in real, mature Android
applications. Aiming at providing a methodology to help
developing energy efficient Android applications, this work
answers the following research questions:

• RQ1: Can programming practices be blindly applied
in order to improve energy efficiency in an Android

2http://www.arm.com/products/processors/technologies/biglittleprocessing.
php (visited in March 3, 2017).

2017 IEEE/ACM 4th International Conference on Mobile Software Engineering and Systems (MOBILESoft)

978-1-5386-2669-6/17 $31.00 © 2017 IEEE

DOI 10.1109/MOBILESoft.2017.19

125

2017 IEEE/ACM 4th International Conference on Mobile Software Engineering and Systems (MOBILESoft)

978-1-5386-2669-6/17 $31.00 © 2017 IEEE

DOI 10.1109/MOBILESoft.2017.19

46

2017 IEEE/ACM 4th International Conference on Mobile Software Engineering and Systems (MOBILESoft)

978-1-5386-2669-6/17 $31.00 © 2017 IEEE

DOI 10.1109/MOBILESoft.2017.19

46

LinearLayout
BgColor=white

LinearLayout
BgColor=blueTextView

TextView TextView
BgColor=white

The same pixel
is writen 3 times

Fig. 1: Example of a tree with the hierarchy of UI components
in an Android app. Pixels in the white TextView had to be
painted with white and blue and finally white.

application?
• RQ2: Do best practices for performance improvement

also improve energy efficiency?
• RQ3: Do these best practices actually have an impact on

real, mature Android applications?

The main contributions of this work are: 1) to provide a
set of best practices to develop energy efficient mobile appli-
cations; 2) to study and discuss the impact of each practice
on energy consumption; and 3) pave the way for a toolset
to automatically detect and refactor energy inefficiencies in
mobile applications. In particular, the takeaway message of
this paper is

Fixing anti-patterns, viz. ViewHolder, DrawAllocation,
WakeLock, ObsoleteLayoutParam and Recycle, lead to
more energy efficient mobile application, saving up to an
hour of battery life.

As a side contribution of this paper, and to foster re-
producibility, a benchmark suite containing all subjects and
test suites used in our experiments is freely available from
http://www.github.com/luiscruz/greenbenchmark.

II. RELATED WORK

Energy profiling in Android software is a challenging task
that has been addressed in many different ways. Some works
measure energy consumption using software tools such as
PowerTutor [11], vLens [12], eProf [13], or eCalc [14].
They provide an estimation using a power model based on
previously collected data. This approach has been widely used
to evaluate energy efficiency in mobile applications [15, 16,
17, 18, 19]. Estimation-based approaches are very handy since
they do not require a special hardware setup. However, they are
only compatible with specific smartphone models and Android
versions, and the measurement validation is very difficult.
In fact, the Android framework provides a tool to collect
battery data from the device — Batterystats tool — but Google

strongly discourages using this data for experimental studies3.
In other works [11, 16, 20, 21], energy consumption has

been measured by using hardware power measuring tools
such as Monsoon4, or even custom made tools that measure
power directly in the phone’s battery connectors. Since this
approach can provide measurements with a higher accuracy,
measurements in this work were performed by using a mobile
device with power sensors. Previous work showed that there
is a large set of code smells that are appearing in Android
applications [22, 23]. The analysis was performed by checking
the application’s source code, bytecode, and metadata but no
refactor was performed, and the impact on energy consumption
was not studied.

Energy efficiency might be improved by offloading heavy
tasks to the cloud [17, 24, 25]. Network components often lead
to high energy consumption but depending on the complexity
of the task, there is a tradeoff between CPU and network
operations. Making such optimization would require structural
changes in applications. In this paper we do not follow the
same principles and network operations were not studied.

Previous work identified common energy-greedy sequences
of Android Application Programming Interface (API) calls in
55 mobile applications [20]. Most energy-greedy API calls
were found to be related to UI manipulation and database
tasks. We take another step further by identifying alternative
sequences that might lead to less energy consumption.

Other approaches have used visualization tools to help
developers spot high energy-consuming I/O events, guiding
developer to fix those events to reduce energy consumption [9].
Debugging energy-related defects has also been done by
relating user reported defects with common energy-inefficient
API calls patterns using log files [26]. Net, Camera, Database,
and UI operations were considered the most energy-intensive
components in 405 real-world mobile applications [18]. Our
approach lies on finding common inefficient patterns and pro-
viding standard optimizations. Ideally this can help developing
energy efficient applications before having to profile energy
bundles.

Some works suggest changing the application’s feature set
(e.g., reducing third-party advertisements, different UI colors
in Organic Light-Emitting Diode (OLED) displays [27], etc.)
as a solution to optimize energy consumption [9, 13, 28, 29].
Such optimizations have to be considered when designing an
energy efficient application. Nevertheless, our work intends to
preserve original functionality of applications.

Energy efficiency has been improved at UI level by re-
moving unnecessary display updates [30]. This approach is
slightly different from ours since it requires modifications at
the operative system level.

The idea of having energy code smells, plus refactoring
fixes, for mobile applications has been studied before. Directed
graphs were used to describe and analyze applications at the

3https://developer.android.com/studio/profile/battery-historian-charts.html
(visited in March 3, 2017).

4https://www.msoon.com/LabEquipment/PowerMonitor/ (visited in March
3, 2017).

1264747

source code level, and a graph repository query language was
proposed to detect code smells [31]. However, the effect of
these code smells on energy consumption was not evaluated.
Our work presents results of the optimization of mobile appli-
cation along with statistical significance tests and effect sizes.
Previous work reported that, depending on the application,
code smells could have opposite impacts on energy consump-
tion [32]. However, as opposed to the work presented in this
paper, the study did not include mobile applications. Other
work has used a similar approach to measure the impact of
performance tips in Android applications [7]. However, these
tips focus on internal aspects of the way Java is assembled in
Android, which is expected to have impact in heavy processing
tasks rather than in normal android applications. Our work
takes it to another level and focuses on the way applications
consume the Android framework’s APIs.

Previous works have studied the influence of the pattern
Internal Getter/Setter [7, 33, 34, 35, 36, 37] but it has been
reported by Google as not having any effect in performance
since Android 2.356. Thus, we considered this optimization
obsolete and left it out of our study.

Making an efficient use of the resources of a mobile device
(e.g., GPS, Camera, Wifi) is a good way of saving energy. The
use of these resources can be optimized by creating an event-
flow graph (EFG) that represents UI states of a given Android
app [38]. Defects are detected and refactored by matching
expressions with a deterministic finite automaton based on
the EFG. Although our work has similar goals, we have
focused instead on code smells that directly affect CPU usage,
including UI optimizations. In addition, significance tests were
performed to consolidate the relevance of our results.

III. EMPIRICAL STUDY

We conducted a study in which energy consumption (mea-
sured in Joules (J)) was our dependent variable, while Android
optimizations were the independent variable. In this section we
describe our methodology and empirical study:
A. Android application selection
B. Static analysis and refactoring
C. Generation of automatic UI tests
D. Energy measurement tools setup
E. Experiments execution
F. Data analysis

A. Android Application Selection
The technique proposed in this paper, hence the empirical

evaluation, needs the source code of the applications under
analysis. For that matter, we use F-droid, a free and open
source software catalog of Android applications. Currently,
F-droid offers over 2, 300 open source applications7. The
Google Play Store was used to obtain further details about
the popularity of the application in the Android community.

5http://stackoverflow.com/q/4912695/ (visited in March 3, 2017)
6http://tools.android.com/tips/lint-checks (visited in March 3, 2017)
7https://f-droid.org/wiki/page/Repository Maintenance visited in March 3,

2017

Applications were selected according to the following cri-
teria: 1) open source, 2) active development, 3) not using
heavy network operations, since we are not optimizing them.
Applications were randomly selected and filtered when no
performance issue was found by lint. Given the complexity
of the experiments for each application we have limited our
study to six applications:
Loop - Habit Tracker An application to track habits. Users’

rating for version 1.4.1 is 4.7 out of 5.
Writeily Pro A note editor with markdown support. Users’

rating for version 1.3.2 is 4.3 out of 5.
Talalarmo Alarm Clock A minimalist alarm clock. Users’

rating for version 3.9 is 4.4 out of 5.
GnuCash A finance application to keep track of personal

expenses. Rating for version 2.0.7 is 4.3.
Acrylic Paint A basic drawing application. This application

is only available through the F-droid application store.
Simple Gallery Application to view pictures stored in the

mobile device. Rating for version 1.15 is 4.7.
Table I shows information regarding the complexity of the

applications as well as statistics from Google Play store. It
presents number of installs, rating, and number of users that
rated the application at Google Play Store, as well as lines of
code (LOC) in Java, LOC in XML, number of classes, and
McCabe’s cyclomatic complexity (CC). Loop - Habit Tracker
and GnuCash are the most complex applications, with over
25, 000 LOC. Besides having a large number of LOC in Java,
GnuCash also has a large number of LOC in XML, more
than 20, 000, which in Android is used for specification of
the UI and other resources. It also has the highest CC value,
2, 846. Talalarmo Alarm Clock is the simplest application with
approximately 1, 000 lines of Java code, 1, 043 of XML, and
a CC of 131. This was expected since it provides a small set
of features.

B. Static Analysis and Refactoring

In order to measure the impact of performance-based guide-
lines in Android applications it is necessary to systematically
detect parts of code that did not comply with those guidelines.
We have performed static code analysis to automatically detect
code smells, such as Overdraw, mentioned in Section I. The
Android Software Development Kit (SDK) provides a tool for
this purpose, lint8, which detects problems related with the
structural quality of the code.

Code smells were chosen by considering performance-
related suggestions given by lint that (1) are common in
Android applications, and (2) potentially modify important
parts of the application to fix the problem. Eight patterns
resulted from this selection. Below we detail the eight patterns,
including a rough estimation of priority provided by lint
documentation. In lint, priority is an integer between 1 and
10, with 10 being the most important — this is merely used
to sort issues relative to each other.

8http://developer.android.com/tools/debugging/improving-w-lint.html vis-
ited in March 3, 2017.

1274848

TABLE I: Metrics of applications used in experiments.

Application Installs (May 2016) Rating # ratings LOC (Java) LOC (XML) Classes CC
Loop - Habit Tracker 50,000–100,000 4.7 1,252 28,295 7,302 193 2,471
Writeily Pro 1,000–5,000 4.3 84 3,251 2,612 86 498
Talalarmo Alarm Clock 1,000–5,000 4.4 63 1,043 192 26 131
GnuCash 50,000–100,000 4.3 2,460 26,532 20,757 286 2,846
Acrylic Paint n.a. n.a. n.a. 961 384 18 119
Simple Gallery 1,000–5,000 4.7 18 2,227 685 37 434

DrawAllocation: Allocations within drawing code It is a
bad practice allocating objects during a drawing or layout
operation. Allocating objects can cause garbage collection
operations that will slow down the operation and create a
nonsmooth UI. The recommended fix is allocating objects
upfront and reusing them for each drawing operation. Lint
priority: |||||||||| 9/10.

WakeLock: Incorrect wake lock usage Wake locks are
mechanisms to control the power state of the mobile
device. This can be used to wake up the screen or the
CPU when the device is in a sleep state in order to
perform tasks. If an application fails to release a wake
lock or uses it without being strictly necessary, it can
drain the battery. As an example, some applications
use a wake lock to keep the screen on. This requires
developers to properly release the wake lock when it is
no longer necessary. Alternatively, the application can
set the flag FLAG_KEEP_SCREEN_ON and the system
will properly manage the wake lock, being less prone to
errors. Lint priority: |||||||||| 9/10.

Recycle: Missing recycle() calls There are collections such
as TypedArray that are implemented using singleton
resources. Thus, they should be released so that calls to
different TypedArray objects can efficiently use these
same resources. Lint priority: |||||||||| 7/10.

ObsoleteLayoutParam: Obsolete layout params During
development, UI views might be refactored several
times. In this process, some parameters might be left
unchanged even when they have no effect on the view.
This causes useless attribute processing at runtime. Lint
priority: |||||||||| 6/10.

ViewHolder: View Holder Candidates This pattern is used
to make a smoother scroll in List Views. When in a
List View, the system has to draw each item. To make
this process more efficient, data from the previous drawn
item can be reused. The number of calls to the method
findViewById, which is known for being a very
expensive method, decreases with this technique. Lint
priority: |||||||||| 5/10.

Overdraw: Painting regions more than once Another
common inefficiency in Android applications is when
views are being overdrawn. This means that the
same pixel has to be written several times, leading to
unnecessary processing (see Figure 1). This can be
improved by removing the background of views, or by
clipping drawing, when possible. The recommended fix
is adding a statement in the view creation that removes
the background of the parent view:

getWindow().setBackgroundDrawable(null);.
Lint priority: |||||||||| 3/10.

UnusedResources Resources, such as icons or UI elements,
may become obsolete due to changes in the software.
However, developers may forget to remove them from
the project which makes applications larger, consequently
slowing down builds. Lint priority: |||||||||| 3/10.

UselessParent: Useless parent layout Since interface lay-
outs suffer several changes throughout the development
process, layouts frequently become useless. The latter
can eventually be replaced by a descendant layout. Lint
priority: |||||||||| 2/10.

Static code analysis is performed to automatically detect
these patterns in the applications. For each detected pattern,
the application was manually refactored and a new version of
the application was produced. In addition, a version complying
with all the practices was also created. For the sake of
comparison, the original version was also used during the
experiments. Table II shows the anti-patterns that were found
in each of the analyzed applications. Writeily Pro resulted
in five new versions, Simple Gallery in one version, and the
others in three versions.

C. Generation of Automatic UI tests

The energy consumption of a mobile phone while running
an application depends on several conditions (e.g., services
that are running in the device, background tasks). To obtain
meaningful results, the same execution needs to be replicated
several times. The applications used in our study, unfortu-
nately, do not provide test suites that mimic user interaction
with the app. Thus, automatic UI test scripts were manually
created to replicate user interaction in these applications.

The scripts were built using the Python library Android View
Client9. This library allows the interaction with UI components
by querying a view id, description or content, which makes
tests compatible across different devices.

Tests mimic the usual interaction of a user. Algorithms 1
to 6 describe the interaction for the applications Loop - Habit
Tracker, Writeily Pro, Talalarmo, GnuCash, Acrylic Paint,
Simple Gallery, respectively.

For each execution of the test, the application was unin-
stalled and installed with the Android Application Package
(APK) of the version under analysis. Thus, all user data was
erased at the beginning of the experiment, making sure each
execution of the test would have a similar initial state. On the
other hand, cleaning user data requires the application to setup

9https://github.com/dtmilano/AndroidViewClient visited in March 3, 2017.

1284949

TABLE II: Anti-patterns found in open source applications.

Anti-Pattern Loop - Habit Tracker Writeily Pro Talalarmo GnuCash Acrylic Paint Simple Gallery
DrawAllocation — — 2 8+ 3- — 3 7+ 2- —
WakeLock — — 1 11+ 4- — — —
Recycle — — — 1 1+ — —
ObsoleteLayoutParam — — — 2 2- — —
ViewHolder — 1 37+ 21- — — — —
Overdraw 5 5+ 2- 3 7+ 8- — — 3 10+ 7- 4 6+ 3-
UnusedResources 3 231- 67 1+ 318- — — — —
UselessParent — 2 3+ 14- — — — —
Each refactoring is reported with the number of files changed (), number of insertions (+), and number of deletions (-). A dash (—) is present when a given
anti pattern was not found in the application.

Algorithm 1 Loop - Habit Tracker interaction script
1: SkipIntroductoryTips()
2: for i← 1 to 10 do
3: for i← 1 to 7 do
4: CreateNewHabit(i)
5: CheckHabitDetails(i)
6: ScrollThroughTheReport()
7: GoBack()
8: end for
9: DeleteAllHabits()

10: end for

Algorithm 2 Writeily Pro interaction script
1: GoToSettings()
2: GoBack()
3: for i← 1 to 20 do
4: folderOne← CreateFolderWithFoldersInside()
5: folderTwo← CreateFolderWithNotesInside()
6: MoveAllNotesToFirstFolder()
7: CreateNote()
8: folderThree← CreateFolder()
9: MoveItemToFolder(folderOne, folderThree)

10: DeleteFolder(folderThree) ◃ Removes all files
11: end for

in every experiment. This initial setup is not a real use case
scenario, since it would happen only once after installing the
app. To ensure that such scenario does not have a significant
impact on results, we repeat subsequent scenarios a reasonable
number of times — between 10 and 200 — depending on the
complexity of the interaction.

Algorithm 3 Talalarmo interaction script
1: SetAlarmOn() ◃ Starts next minute tick
2: Sleep(5.minutes)
3: StopAlarm()
4: for i← 1 to 200 do
5: SwitchAMAndPM()
6: end for
7: for i← 1 to 12 do
8: SetAlarmOn()
9: SetAlarmOff()

10: SwitchAMAndPM()
11: GoToSettings()
12: SwitchBetweenDarkAndLightTheme()
13: GoBack()
14: end for

Algorithm 4 GnuCash interaction script
1: SkipIntroductionSteps()
2: for i← 1 to 10 do
3: for all account ∈ {”Assets”, ”Equity”} do
4: for i← 1 to 20 do
5: SelectAccount(account)
6: EditAccount()
7: GoBack()
8: end for
9: end for

10: end for

Algorithm 5 Acrylic Paint interaction script
1: SkipIntroduction()
2: for i← 1 to 20 do
3: for i← 1 to 10 do
4: DrawLine()
5: end for
6: GoToColorMenu()
7: for i← 1 to 10 do
8: SetColor()
9: end for

10: GoBack()
11: end for

D. Energy measurement tools setup
To measure the energy consumed in each execution, we

use the bare-board computer ODROID-XU running Android
version 4.2.2 - API level 17.

This device is known for having an architecture similar to a
smartphone. Components such as cellular, location, accelerom-
eter, and screen can be separately integrated. Nevertheless,
these components are not being evaluated since the provided
power sensors only report data for the main CPU, the sec-
ondary CPU, memory, and Graphics Processing Unit (GPU).

Power sensors provide data with a sample period of 263808
microseconds. Since the clock provided by ODROID in this
setup has a precision of one second, data was down sampled.
I.e., different samples with the same timestamp were aggre-

Algorithm 6 Simple Gallery interaction script
1: for i← 1 to 100 do
2: SelectAlbum()
3: SelectPicture()
4: GoBack()
5: GoBack()
6: end for

1295050

Fig. 2: Energy consumption calculation.

gated using the average to a period of one second.
The total energy consumption (i.e., work performed) be-

tween timestamps t0 and tn is calculated by integrating power
over time:

W =

∫ tn

t0

P (t)dt (1)

where P is power and W is the energy consumption (i.e.,
work). In this case, numerical integration was calculated based
on the general Trapezoid Rule:
∫ tn
t0

P (t)dt ≈ ∆t
2 [P (t0) + 2P (t1) + 2P (t2) + ...+ 2P (tn−1) + P (tn)] (2)

This calculation is illustrated in Figure 2, generated with
data extracted from experiments with Writeily Pro. The energy
consumed during an experiment is given by the area of the
function of Power between the timestamp when the interaction
started and the timestamp when interaction ended. In this case,
energy consumption was 28.71J.

E. Experiments Execution
Each experiment was designed to be independent of pre-

vious experiments. The execution of a single experiment is
illustrated by Figure 3. In every experiment, before running
the UI interaction script, the energy logger is uploaded to the
ODROID and set ready to start. The application, if existing,
is uninstalled, the given APK is installed and finally the
application is automatically opened.

After the execution of the UI interaction script, the energy
logger is stopped and the data is collected from ODROID
storage. This process is repeated 30 times for each different
version of the application.

In addition, we measured interaction scripts with a blank
application that we developed. The application does nothing
and aims to give an idea of the energy consumed with
the same UI interaction when the application is in an idle
state. This gives an approximate measure of the overhead of
energy consumed by the experiment setup and by the Android
framework.

Controller
Computer ODROID

Uninstall App &
remove user data

Install APK

Upload Energy
Logger script

Start Energy Logger
Return Energy

Logger PID

UI interaction

Open App

Return Energy Logs

Open App

Stop Energy Logger
(PID)

ADB through USB

Fig. 3: Experiments’ workflow.

F. Data Analysis
a) Downsampling: As described in Section III-D, data

was downsampled to one sample per second in order to
synchronize energy logs with ODROID timestamps.

b) Outlier Removal: Execution of experiments is prone
to failures. This can happen due to a system dialog that
popped up during the experiment, or due to a nontrivial bug
that stopped the application, or to a slower response of the
application that was not expected by the test script. Thus,
there are executions that consumed considerably more or less
energy. In order to reduce the effect of outliers, experiments
with energy consumption outside the range [x̄ − 2s, x̄ + 2s],
where x̄ is the sample mean and s is the sample standard
deviation, were discarded.

IV. RESULTS

In the end, 18 different APKs were tested with a total of
900 executions. It took 94 hours (roughly 4 days) and 75MB
of raw data was collected.

For each app, Table III presents the sample size (n), i.e.,
the number of executions of the interaction script after outlier
removal, mean (x̄) and standard deviation (s) of energy con-
sumption, and the p-value for the Shapiro-Wilk test. Shapiro-
Wilk test for normality is a statistical test for detecting if
the experiments follow a normal distribution. Column Pattern
expresses the code smell that is fixed in that particular fixed
version. Original is a version of the application that was
not modified, serving as baseline. All stands for a version of
the application in which all code smells were fixed. Results
for the executions using the blank application, described in
Section III-E, are also shown.

Figures 4 to 9 plot the results for each of the tested
applications. As the violin plots show a bell-shaped curve and
Shapiro-Wilk test’s p-value is greater than 0.05, we conclude
that data follows a normal distribution.

1305151

TABLE III: Descriptive statistics of experiments

Application Pattern n x̄ (J) s p-value

Loop - Habit
Tracker

Original 28 335.6 35.3 0.76
Overdraw 29 340.8 34.4 0.34
UnusedResources 30 343.1 32.9 0.17
All 29 336.4 34.7 0.58
Blank 29 86.7 1.5 0.31

Writeily Pro

Original 30 119.7 7.2 0.42
Overdraw 30 119.8 6.4 0.63
UnusedResources 30 119.7 6.4 0.43
ViewHolder 30 114.3 6.7 0.16
UselessParent 30 119.3 7.1 0.10
All 30 114.2 7.2 0.06
Blank 30 87.2 9.9 0.20

Talalarmo

Original 29 58.2 0.76 0.28
DrawAllocation 28 57.3 0.79 0.29
WakeLock 28 57.35 0.69 0.59
All 29 57.7 0.93 0.53
Blank 29 41.8 0.46 0.78

GnuCash

Original 30 195.6 2.31 0.40
ObsoleteLayoutParam 29 194.1 2.48 0.89
Recycle 28 194.3 1.44 0.32
All 30 194.0 2.48 0.89
Blank 29 71.4 0.82 0.56

Acrylic Paint

Original 30 62.7 1.01 0.68
DrawAllocation 29 62.5 1.06 0.12
Overdraw 28 64.1 0.68 0.36
All 29 64.0 0.77 0.85
Blank 28 52.9 0.56 0.71

Simple Gallery
Original 30 145.9 3.67 0.28
Overdraw 29 149.0 1.92 0.88
Blank 29 45.1 0.61 0.71

Fig. 4: Energy consumption for Loop - Habit Tracker.

To validate changes in energy consumption, we tested the
following hypotheses:

H0 : µfixed − µoriginal = 0

H1 : µfixed − µoriginal ̸= 0

where µoriginal stands for the mean of the energy consumption
for the original version, and µfixed of the fixed versions.
Considering the samples as independent and since we have
nonpaired data in which the standard deviation of populations
is not known, we used Welch’s two-sample t-test as the most

Fig. 5: Energy consumption for Writeily Pro.

Fig. 6: Energy consumption for Talalarmo.

Fig. 7: Energy consumption for GnuCash.

appropriate test for our analysis. A two-tail p-value was used
with a p-critical value (α) of 0.05. Results are shown in
Table IV.

Table V presents the effect size results for the patterns with
significant impact on energy. It presents the mean difference
(MD) (x̄fixed − x̄original), Cohen’s d (x̄fixed−x̄original

s), a
method to indicate a standardized difference between means,

1315252

Fig. 8: Energy consumption for Acrylic Paint.

Fig. 9: Energy consumption for Simple Gallery.

TABLE IV: Significance Welch’s t-test results

Application Pattern Test p-value

Loop - Habit Tracker
Overdraw -0.56 .5784
UnusedResources -0.83 .4121
All -0.08 .9362

Writeily Pro

Overdraw -0.10 .9180
UnusedResources -0.03 .9790
ViewHolder 3.02 .0038
UselessParent 0.20 .8434
All 2.93 .0049

Talalarmo
DrawAllocation 4.18 .0001
WakeLock 4.43 < .0001
All 2.16 .0353

GnuCash
ObsoleteLayoutParam 2.57 .0127
Recycle 2.55 .0140
All 2.47 .0164

AcrylicPaint
DrawAllocation 0.64 .5221
Overdraw 45.88 < .0001
All -5.84 < .0001

Simple Gallery Overdraw -4.04 .0010

improvement (IMP) compared to the original consumption
(x̄fixed−x̄original

x̄original
), and the column Savings, which provides

the number of minutes of battery life saved after repeating
the same usage of the application during 24 hours.

For example, the application GnuCash in Table III presents
5 rows, each for a different tested version of the application
and for the blank application. The fixed version for the

Recycle pattern has 28 experiments (n) which on average (x̄)
consumed 194.3J with a standard deviation (s) of 1.44 and
a p-value for the normality test of 0.32. Significance tests
presented in Table IV, show that this version of GnuCash
can significantly reduce energy consumption, since the p-value
obtained with the Welch’s t-test is 0.0140 which is lower
than our significance level α = 0.05. All fixed versions that
passed the significance level were reported in Table V. The
table shows that this version of the application provided a
MD of −1.28J, which means that it saved 1.28J, providing an
improvement of 0.65% over the original version. This means
that after 24 hours of using the app, the battery could last
approximately 9 more minutes. The same analysis can be made
with the other applications.

V. DISCUSSION

Results show that ViewHolder, DrawAllocation, WakeLock,
ObsoleteLayoutParam, and Recycle are patterns that need to
be taken into account to develop an energy efficient mobile
application. ViewHolder is the pattern with the greatest impact,
with an improvement of approximately 5% in Writeily Pro.
The original version consumed 119.7J while it consumed
114.3J after being modified. This translates into 65 minutes of
savings after 1 day of usage (see Table V). When considering
a usage of 3.75 hours, this would translate in extra 10 minutes,
without affecting user experience.

DrawAllocation also provides an interesting improvement.
Although it occurred in a tiny part of the user interaction in
Talalarmo, we observed an improvement of 1%. DrawAlloca-
tion was also tested with Acrylic Paint but it did not have a
statistically significant improvement. The fix affected the color
picker redraw routine. Using the Android developer options to
debug view updates, we can see that redraw is only happening
a single time when a new color is chosen. The impact of this
fix in the overall execution was minimal, which might have
been the reason for not having significant changes in energy
consumption.

Fixing incorrect WakeLock usage also provided an improve-
ment of 1%. In the original version of Talalarmo, the wake
lock was not being properly released which could have lead
to energy drain in particular cases. For instance, when the
application is no longer in the alarm mode and the wake lock
was not properly released, the device cannot activate a lower
power state. This would consume energy unnecessarily but,
given the nature of our tests, such a scenario is not being
effectively tested. Thus, the effect size is expected to be higher
in a real case scenario.

ObsoleteLayoutParam and Recycle anti-patterns were found
in the application GnuCash. Although results showed a small
effect size, with improvements of less than 1% (see Table V),
they were statistically significant, as shown in Table IV. After
analyzing the changes made to fix ObsoleteLayoutParam,
we saw that it only required removing two obsolete view
attributes. One in a list view and another in a list item. Thus, a
big effect was not expected from this optimization. Still, for a
more energy efficient practice, this issue should be considered.

1325353

TABLE V: Effect size of significant patterns

Application Pattern MD Cohen’s d IMP (%) Savings (min)

Writeily Pro ViewHolder ↓ -5.39 -0.78 4.50 65
All ↓ -5.42 -0.76 4.53 65

Talalarmo
DrawAllocation ↓ -0.86 -1.11 1.47 21
WakeLock ↓ -0.85 -1.17 1.46 21
All ↓ -0.48 -0.57 0.82 12

GnuCash
ObsoleteLayoutParam ↓ -1.41 -0.67 0.72 10
Recycle ↓ -1.28 -0.66 0.65 9
All ↓ -1.53 -0.64 0.78 11

Acrylic Paint Overdraw ↑ 1.42 1.64 -2.26 -33
All ↑ 1.37 1.51 -2.18 -31

Simple Gallery Overdraw ↑ 3.08 1.04 -2.11 -30

UI changes during the application development and obsolete
attributes can be easily forgotten. This is a common issue,
since it does not affect the UI appearance. Regarding Recycle,
the issue occurred when accessing the color of an account.
GnuCash allows the user to create several accounts. Each
account can be customized with a different color. To get the
account’s color options a TypedArray needs to be accessed.
The issue lay in the fact that TypedArray was not being
closed after it had been accessed. This only happens when a
user opens the settings of an account. Regardless, it was able
to have significant impact on energy consumption, according
to the results of the Welch’s t-test in Table IV.

Surprisingly, after fixing Overdraw, applications ended up
consuming more energy. Although Overdraw can create a
laggy UI, fixing it can lead to more energy consumption. In
the applications Acrylic Paint and Simple Gallery, it decreased
battery life approximately 30 minutes after one day of usage.
Having a simple UI layout hierarchy is always a good practice,
but adding extra code to avoid Overdraw requires processing,
which might not be worth it, depending on the scenario.

When the application has a view that remains active for a
considerable amount of time, this view will have to redraw
itself several times. In this case, having an efficient redraw is
important, and fixing Overdraw is expected to create interest-
ing results. On the other hand, if a view is being created several
times but does not remain active for a reasonable amount
of time, fixing Overdraw might be creating an unnecessary
overhead during the creation of the view. Since modeling user
behavior is not a trivial task, in our experiments the time a
user spends in a view is not being considered. Thus, views
with long lifetime were not explored.

UnusedResources and UselessParent did not have any sig-
nificant effect, as showed by the Welch’s t-test in Table IV.
UnusedResources was tested in the applications Loop - Habit
Tracker and Writeily Pro. Having unused resources in the
application can increase build time, APK size, and complexity
of project maintenance. Thus, it is still an anti-pattern to be
considered, although it does not affect energy consumption.
UselessParent was tested in the application Writeily Pro. Since
the test is focusing in common use case scenarios rather than a
particular anti-pattern, it is possible that UselessParent was not
a relevant issue in this scenario. This means that optimization
was not necessary in this particular case, but it can still be
useful in other applications and scenarios.

It is interesting to note that in a few cases, improvements
were higher after fixing a single anti-pattern than after fixing
all of them (e.g., Talalarmo). The main reason for this lies
in the fact that experiences are prone to random variations
related with the power meter and the mobile device. Thus,
results may change from experiment to experiment, and effect
size measures are not very precise. Nevertheless, this does
not affect statistical significance, which shows that energy
consumption reduces after using these patterns.

The results for the blank application show that in some
experiments a great part of energy is consumed in the exper-
imental setup. Analyzing Table III, regarding the application
Acrylic Paint, the interaction script running with the original
version consumed on average 62.68J, whereas on the blank
application consumed 52.93J on average. This means that
the interaction script consumed 84% of the total energy
consumption, leaving only 16% for optimization. The least
affected application by the interaction script was Loop - Habit
Tracker, consuming only 26% of the total energy consumption.

RQ1: Can programming practices be blindly applied
in order to improve energy efficiency in an Android
application?

Optimizations analyzed in this work do not affect the feature
set of the application. This means that they can be applied
without having to deal with tradeoffs between user experience
and energy consumption. Furthermore, the instrumentation
made for the applications in this study did not require previous
knowledge about the project. Therefore, energy consump-
tion was reduced after applying patterns ViewHolder (4.5%),
DrawAllocation (1.5%), WakeLock (1.5%), ObsoleteLayout-
Param (0.7%), and Recycle (0.7%).

RQ2: Do best practices for performance improvement
also improve energy efficiency?

Our results show that there are performance optimizations
that also have an impact on energy consumption. Fix-
ing ViewHolder, DrawAllocation, WakeLock, ObsoleteLayout-
Param, and Recycle improved energy efficiency. Developers
should consider performance anti-patterns when developing
energy efficient applications. This does not conform with
previous work [7] mainly because we have studied Android
specific optimizations. However, UnusedResources and Use-

1335454

lessParent did not provide any significant change in energy
consumption, while Overdraw was found to consume more
energy (2.2%). Nevertheless, the impact of these patterns
depends on the case in which it is being applied, as it was
shown with the Overdraw pattern. Different applications and
use cases might have better or worse results. Further research
need to be made to identify optimal or worst-case scenarios
for these patterns.

RQ3: Do these best practices actually have an impact on
real, mature Android applications?

Six open source Android applications were included in this
study. They are available on F-Droid and, with the exception
of Acrylic Paint, they can also be downloaded from Google
Play Store. From these six, we were able to improve energy
efficiency in three applications. We observed improvements
in Writeily Pro (4.5%), Talalarmo (1.4%), and GnuCash
(0.8%). This evidence suggests that any application with
patterns ViewHolder, DrawAllocation, WakeLock, Obsolete-
LayoutParam, and Recycle can have improvements in energy
efficiency. More applications should however be evaluated to
corroborate with this intuition. As said in the Introduction,
the test cases used in the study are available online to foster
reproducibility.

A. Threats to the Validity

The refactor performed and the validation of its changes is
limited to our perception of the application’s features and to
the impact we expect from our code changes.

Results obtained from energy measurements can be affected
by several factors that are not easily controlled. Different
devices and different versions of Android may respond in a
different way to these optimizations. Background tasks per-
formed by other applications affect energy consumption and
are hard to control. Although the performed outlier removal
intends to discard these cases, some of them may still have
impacted some experiments.

In addition, we did not measure energy consumption of
the whole device. Other components such as GPS and ac-
celerometer are known to have a significant impact on energy
consumption. The same happens with network operations and
screen usage. However, the later is expected to have the same
energy consumption in all cases. The automatic interaction
with the UI, used in our experiments, may also create overhead
on the energy spent. This might affect results in terms of effect
size but we do not expect it to affect statistic significance.

External factors, such as temperature can also affect ex-
periment results. If a CPU has a higher temperature, it will
consume more energy. However, if a CPU has to do more
processing, it will increase its temperature, which means that
temperature can also be an effect and not the cause. We have
repeated 30 times the experiment for each fixed version in
order to have a fairer comparison, although this can still be a
threat. In addition, the experiments were alternatively executed

with other versions of a given app to assure similar external
factors for all versions.

Patterns were studied in a small set of applications. Since
the impact of these patterns heavily depends upon the case
in which it is being applied, further experiments should be
conducted to understand overall effects. Nevertheless, this
study is an initial exploration of the impact of anti-patterns
in energy consumption.

VI. CONCLUSIONS AND FUTURE WORK

As mobile applications operate in a very resource con-
strained environment, energy consumption is a concern that
needs to be addressed while developing mobile applications.
In this paper, we have studied whether or not eight Android,
performance-related code smells also lead to considerable
overhead on energy consumption.

The empirical evaluation reported in this paper, using
six Android applications, shows that performance-based pat-
terns/smells lead to more energy efficient mobile application,
saving up to an hour of battery life. In particular, from the
eight analyzed code smells, five were found to reduce energy
consumption.

For energy efficiency, developers should take into account
anti-patterns ViewHolder, DrawAllocation, WakeLock, Obso-
leteLayoutParam, and Recycle. This paper suggests that a
toolset to automatically refactor mobile applications to avoid
these code smells would greatly improve energy efficiency of
already deployed mobile applications. It would help developers
since they would not need a deep understanding of these
practices. Furthermore, it also paves the way to Integrated De-
velopment Environments (IDEs) to consider plugins to review
code, warn and educate developers when energy inefficient
constructs are being used.

Future work includes building an IDE-based toolset with
two main features: one to help developers building greener
applications, and another to label mobile applications with
respect to energy efficiency (e.g., as in [39] for code quality,
using stars: 1 star — very bad — 5 stars — very good). We
also plan to study the impact of other anti-patterns.

VII. ACKNOWLEDGMENTS

This work is financed by ERDF – European Regional Devel-
opment Fund through the Operational Programme for Com-
petitiveness and Internationalization - COMPETE 2020 Pro-
gramme within project POCI-01-0145-FEDER-006961, and
by National Funds through FCT – Foundation for Science
and Technology as part of project UID/EEA/50014/2013.
Luis Cruz is sponsored by an FCT scholarship grant number
PD/BD/52237/2013. Furthermore, we would like to thank
João Cardoso and the SPeCS research group for lending their
ODROID device and Ana Lúcia Andrade, Rui Pereira, and
José Campos for their valuable feedback on earlier versions
of this paper.

1345555

REFERENCES

[1] A. J. Oliner, A. P. Iyer, I. Stoica, E. Lagerspetz, and
S. Tarkoma, “Carat: Collaborative energy diagnosis for
mobile devices,” in Proceedings of the 11th ACM Con-
ference on Embedded Networked Sensor Systems. ACM,
2013, p. 10.

[2] M. Böhmer, B. Hecht, J. Schöning, A. Krüger, and
G. Bauer, “Falling asleep with angry birds, facebook and
kindle: a large scale study on mobile application usage,”
in Proceedings of the 13th international conference on
Human computer interaction with mobile devices and
services. ACM, 2011, pp. 47–56.

[3] C. Pang, A. Hindle, B. Adams, and A. E. Hassan,
“What do programmers know about software energy
consumption?” IEEE Software, vol. 33, no. 3, pp.
83–89, May 2016. [Online]. Available: http://dx.doi.org/
10.1109/MS.2015.83

[4] R. Pereira, M. Couto, J. Saraiva, J. Cunha, and J. P. Fer-
nandes, “The influence of the java collection framework
on overall energy consumption,” in Proceedings of the
5th International Workshop on Green and Sustainable
Software. ACM, 2016, pp. 15–21.

[5] G. Pinto, F. Castor, and Y. D. Liu, “Understanding energy
behaviors of thread management constructs,” in ACM
SIGPLAN Notices, vol. 49, no. 10. ACM, 2014, pp.
345–360.

[6] A. E. Trefethen and J. Thiyagalingam, “Energy-aware
software: Challenges, opportunities and strategies,” Jour-
nal of Computational Science, vol. 4, no. 6, pp. 444–449,
2013.

[7] C. Sahin, L. Pollock, and J. Clause, “From benchmarks to
real apps: Exploring the energy impacts of performance-
directed changes,” Journal of Systems and Software, vol.
117, pp. 307–316, 2016.

[8] K. Yu, D. Han, C. Youn, S. Hwang, and J. Lee, “Power-
aware task scheduling for big. little mobile processor,”
in SoC Design Conference (ISOCC), 2013 International.
IEEE, 2013, pp. 208–212.

[9] A. Pathak, Y. C. Hu, M. Zhang, P. Bahl, and Y.-M.
Wang, “Fine-grained power modeling for smartphones
using system call tracing,” in Proceedings of the sixth
conference on Computer systems. ACM, 2011, pp. 153–
168.

[10] G. Pinto, F. Castor, and Y. D. Liu, “Mining questions
about software energy consumption,” in Proceedings
of the 11th Working Conference on Mining Software
Repositories. ACM, 2014, pp. 22–31.

[11] L. Zhang, B. Tiwana, Z. Qian, Z. Wang, R. P. Dick,
Z. M. Mao, and L. Yang, “Accurate online power es-
timation and automatic battery behavior based power
model generation for smartphones,” in Proceedings
of the eighth IEEE/ACM/IFIP international conference
on Hardware/software codesign and system synthesis.
ACM, 2010, pp. 105–114.

[12] D. Li, S. Hao, W. G. Halfond, and R. Govindan, “Cal-

culating source line level energy information for android
applications,” in Proceedings of the 2013 International
Symposium on Software Testing and Analysis. ACM,
2013, pp. 78–89.

[13] A. Pathak, Y. C. Hu, and M. Zhang, “Where is the energy
spent inside my app?: fine grained energy accounting on
smartphones with eprof,” in Proceedings of the 7th ACM
european conference on Computer Systems. ACM, 2012,
pp. 29–42.

[14] S. Hao, D. Li, W. G. Halfond, and R. Govindan, “Esti-
mating android applications’ cpu energy usage via byte-
code profiling,” in Proceedings of the First International
Workshop on Green and Sustainable Software. IEEE
Press, 2012, pp. 1–7.

[15] L. Zhang, M. S. Gordon, R. P. Dick, Z. M. Mao,
P. Dinda, and L. Yang, “Adel: An automatic detector
of energy leaks for smartphone applications,” in Pro-
ceedings of the eighth IEEE/ACM/IFIP international
conference on Hardware/software codesign and system
synthesis. ACM, 2012, pp. 363–372.

[16] K. M. Saipullah, A. Anuar, N. A. Ismail, and Y. Soo,
“Measuring power consumption for image processing
on android smartphone,” American Journal of Applied
Sciences, vol. 9, no. 12, p. 2052, 2012.

[17] D. Li and W. G. Halfond, “Optimizing energy of http
requests in android applications,” in Proceedings of the
3rd International Workshop on Software Development
Lifecycle for Mobile. ACM, 2015, pp. 25–28.

[18] D. Li, S. Hao, J. Gui, and W. G. Halfond, “An em-
pirical study of the energy consumption of android
applications,” in 2014 IEEE International Conference on
Software Maintenance and Evolution (ICSME). IEEE,
2014, pp. 121–130.

[19] M. Gottschalk, J. Jelschen, and A. Winter, “Saving
energy on mobile devices by refactoring.” in EnviroInfo,
2014, pp. 437–444.

[20] M. Linares-Vásquez, G. Bavota, C. Bernal-Cárdenas,
R. Oliveto, M. Di Penta, and D. Poshyvanyk, “Mining
energy-greedy api usage patterns in android apps: an
empirical study,” in Proceedings of the 11th Working
Conference on Mining Software Repositories. ACM,
2014, pp. 2–11.

[21] A. Hindle, “Green mining: a methodology of relating
software change and configuration to power consump-
tion,” Empirical Software Engineering, vol. 20, no. 2,
pp. 374–409, 2015.

[22] U. A. Mannan, I. Ahmed, R. A. M. Almurshed, D. Dig,
and C. Jensen, “Understanding code smells in android ap-
plications,” in Proceedings of the International Workshop
on Mobile Software Engineering and Systems. ACM,
2016, pp. 225–234.

[23] G. Hecht, R. Rouvoy, N. Moha, and L. Duchien, “De-
tecting antipatterns in android apps,” in Proceedings of
the Second ACM International Conference on Mobile
Software Engineering and Systems. IEEE Press, 2015,
pp. 148–149.

1355656

[24] Y.-W. Kwon and E. Tilevich, “Facilitating the implemen-
tation of adaptive cloud offloading to improve the energy
efficiency of mobile applications,” in Mobile Software
Engineering and Systems (MOBILESoft), 2015 2nd ACM
International Conference on. IEEE, 2015, pp. 94–104.

[25] H. Qian and D. Andresen, “Reducing mobile device
energy consumption with computation offloading,” in
Software Engineering, Artificial Intelligence, Networking
and Parallel/Distributed Computing (SNPD), 2015 16th
IEEE/ACIS International Conference on. IEEE, 2015,
pp. 1–8.

[26] A. Banerjee, H.-F. Guo, and A. Roychoudhury, “De-
bugging energy-efficiency related field failures in mobile
apps,” in IEEE/ACM International Conference on Mobile
Software Engineering and Systems, MOBILESoft, vol. 16,
2016.

[27] X. Chen, Y. Chen, Z. Ma, and F. C. Fernandes, “How is
energy consumed in smartphone display applications?” in
Proceedings of the 14th Workshop on Mobile Computing
Systems and Applications. ACM, 2013, p. 3.

[28] D. Li, A. H. Tran, and W. G. Halfond, “Nyx: A display
energy optimizer for mobile web apps,” in Proceedings of
the 2015 10th Joint Meeting on Foundations of Software
Engineering. ACM, 2015, pp. 958–961.

[29] M. Linares-Vásquez, G. Bavota, C. E. B. Cárdenas,
R. Oliveto, M. Di Penta, and D. Poshyvanyk, “Optimiz-
ing energy consumption of guis in android apps: a multi-
objective approach,” in Proceedings of the 2015 10th
Joint Meeting on Foundations of Software Engineering.
ACM, 2015, pp. 143–154.

[30] D. Kim, N. Jung, Y. Chon, and H. Cha, “Content-
centric energy management of mobile displays,” IEEE
Transactions on Mobile Computing, vol. 15, pp. 1925 –
1938, 2015.

[31] M. Gottschalk, M. Josefiok, J. Jelschen, and A. Winter,
“Removing energy code smells with reengineering ser-
vices.” in GI-Jahrestagung, 2012, pp. 441–455.

[32] C. Sahin, L. Pollock, and J. Clause, “How do code
refactorings affect energy usage?” in Proceedings of the
8th ACM/IEEE International Symposium on Empirical

Software Engineering and Measurement. ACM, 2014,
p. 36.

[33] D. Li and W. G. Halfond, “An investigation into energy-
saving programming practices for android smartphone
app development,” in Proceedings of the 3rd Interna-
tional Workshop on Green and Sustainable Software.
ACM, 2014, pp. 46–53.

[34] S. Mundody and K. Sudarshan, “Evaluating the impact of
android best practices on energy consumption,” in IJCA
Proceedings on International Conference on Information
and Communication Technologies, vol. 8, 2014, pp. 1–4.

[35] A. R. Tonini, L. M. Fischer, J. C. B. de Mattos, and
L. B. de Brisolara, “Analysis and evaluation of the
android best practices impact on the efficiency of mobile
applications.” in SBESC, 2013, pp. 157–158.

[36] G. Hecht, N. Moha, and R. Rouvoy, “An empirical study
of the performance impacts of android code smells,” in
Proceedings of the International Conference on Mobile
Software Engineering and Systems, ser. MOBILESoft
’16. New York, NY, USA: ACM, 2016, pp. 59–69.
[Online]. Available: http://doi.acm.org/10.1145/2897073.
2897100

[37] A. Carette, M. A. A. Younes, G. Hecht, N. Moha, and
R. Rouvoy, “Investigating the energy impact of android
smells,” in 24th International IEEE Conference on Soft-
ware Analysis, Evolution and Reengineering (SANER).
IEEE, 2017, p. 10.

[38] A. Banerjee and A. Roychoudhury, “Automated re-
factoring of android apps to enhance energy-efficiency,”
in Proceedings of the International Conference on Mobile
Software Engineering and Systems, ser. MOBILESoft
’16. New York, NY, USA: ACM, 2016, pp. 139–150.
[Online]. Available: http://doi.acm.org/10.1145/2897073.
2897086

[39] R. Jabbarvand, A. Sadeghi, J. Garcia, S. Malek, and
P. Ammann, “Ecodroid: An approach for energy-based
ranking of android apps,” in Proceedings of the Fourth
International Workshop on Green and Sustainable Soft-
ware. IEEE Press, 2015, pp. 8–14.

1365757

