
Performance-based Guidelines
for Energy-efficient Mobile

Applications
Luis Cruz, Rui Abreu

luiscruz@fe.up.pt
rui@computer.org

mailto:luiscruz@fe.up.pt?subject=
mailto:rui@computer.org

Motivation
• Mobile and wearable devices

are very popular nowadays

• Users expect all-day battery
life on their devices

• Impact of energy
improvements in mobile
applications is hard to
measure and time consuming

2

Hypothesis

Performance based optimizations
can be used to ship energy efficient
Android applications.

3

Research Questions

RQ1: Can programming practices be blindly applied
in order to improve energy efficiency in an
Android application?

RQ2: Do best practices for performance improvement
also improve energy efficiency?

RQ3: Do these best practices actually have an impact
on real mature Android applications?

4

Research Questions

RQ1: Can programming practices be blindly applied
in order to improve energy efficiency in an
Android application?

RQ2: Do best practices for performance improvement
also improve energy efficiency?

RQ3: Do these best practices actually have an impact
on real mature Android applications?

5

Research Questions

RQ1: Can programming practices be blindly applied
in order to improve energy efficiency in an
Android application?

RQ2: Do best practices for performance improvement
also improve energy efficiency?

RQ3: Do these best practices actually have an impact
on real mature Android applications?

6

Methodology
A. Android application selection

B. Static analysis and refactoring

C. Generation of automatic UI tests

D. Energy measurement tools setup

E. Experiments execution

F. Data analysis

7

A. Android application
selection

• 6 open-source Apps available at Google Play and/or F-Droid

8

Writeily ProLoop - Habit Tracker Talalarmo

GnuCash Simple Gallery Acrylic Paint

B. Static analysis and
refactoring

• Android Lint to detect code smells

• 8 performance-based code smells were studied

• Each code smell was fixed and a new version of
the app was generatedTABLE II: Anti-patterns found in open source applications.

Anti-Pattern Loop - Habit Tracker Writeily Pro Talalarmo GnuCash Acrylic Paint Simple Gallery
DrawAllocation - - • - • -
WakeLock - - • - - -
Recycle - - - • - -
ObsoleteLayoutParam - - - • - -
ViewHolder - • - - - -
Overdraw • • - - • •
UnusedResources • • - - - -
UselessParent - • - - - -

by querying a view id, description or content, which makes
tests compatible across different devices.

Tests mimic the usual interaction of a user. Algorithms 1
to 6 describe the interaction for the applications Loop - Habit
Tracker, Writeily Pro, Talalarmo, GnuCash, Acrylic Paint,
Simple Gallery, respectively.

Algorithm 1 Loop - Habit Tracker interaction script
1: SkipIntroductoryTips()
2: for i 1 to 10 do
3: for i 1 to 7 do
4: CreateNewHabit(i)
5: CheckHabitDetails(i)
6: ScrollThroughTheReport()
7: GoBack()
8: end for
9: DeleteAllHabits()

10: end for

Algorithm 2 Writeily Pro interaction script
1: GoToSettings()
2: GoBack()
3: for i 1 to 20 do
4: folderOne CreateFolderWithFoldersInside()
5: folderTwo CreateFolderWithNotesInside()
6: MoveAllNotesToFirstFolder()
7: CreateNote()
8: folderThree CreateFolder()
9: MoveItemToFolder(folderOne, folderThree)

10: DeleteFolder(folderThree) . Removes all files
11: end for

For each execution of the test, the application was unin-
stalled and installed with the Android Application Package
(APK) of the version under analysis. Thus, all user data was
erased at the beginning of the experiment, making sure each
execution of the test would have a similar initial state. On the
other hand, cleaning user data requires the application to setup
in every experiment. This initial setup is not a real use case
scenario, since it would happen only once after installing the
app. To ensure that such scenario does not have a significant
impact on results, we repeat subsequent scenarios a reasonable
number of times — between 10 and 200 — depending on the
complexity of the interaction.

Algorithm 3 Talalarmo interaction script
1: SetAlarmOn() . Starts next minute tick
2: Sleep(5.minutes)
3: StopAlarm()
4: for i 1 to 200 do
5: SwitchAMAndPM()
6: end for
7: for i 1 to 12 do
8: SetAlarmOn()
9: SetAlarmOff()

10: SwitchAMAndPM()
11: GoToSettings()
12: SwitchBetweenDarkAndLightTheme()
13: GoBack()
14: end for

Algorithm 4 GnuCash interaction script
1: SkipIntroductionSteps()
2: for i 1 to 10 do
3: for all account 2 {”Assets”, ”Equity”} do
4: for i 1 to 20 do
5: SelectAccount(account)
6: EditAccount()
7: GoBack()
8: end for
9: end for

10: end for

Algorithm 5 Acrylic Paint interaction script
1: SkipIntroduction()
2: for i 1 to 20 do
3: for i 1 to 10 do
4: DrawLine()
5: end for
6: GoToColorMenu()
7: for i 1 to 10 do
8: SetColor()
9: end for

10: GoBack()
11: end for

Algorithm 6 Simple Gallery interaction script
1: for i 1 to 100 do
2: SelectAlbum()
3: SelectPicture()
4: GoBack()
5: GoBack()
6: end for

9

C. Generation of automatic
UI tests

• Scripts to mimic user interaction

• Manually created using Android View Client

• Allows replication of experiments

10

• Run apps in bare-board
computer ODROID

• Power sensors for main
CPU, secondary CPU,
memory, and GPU

• 4 samples per second

D. Energy measurement
tools setup

ODROID-XU
©2013 Hardkernel co.

11

D. Energy measurement
tools setup

• Power is an
instantaneous
measurement (watts)

• Energy is a
measurement of
power over a period
of time (joules)

E. Experiments execution

• For every fixed code
smell the experiment
was equally executed
30 times for statistical
validation

Controller
Computer ODROID

Uninstall App &
remove user data

Install APK

Upload Energy
Logger script

Start Energy Logger

Return Energy
Logger PID

UI interaction

Open App

Return Energy Logs

Open App

Stop Energy Logger
(PID)

ADB through USB

13

F. Data analysis

• Power readings were down-sampled to 1 second

• Energy consumptions that differ 2 standard
deviations from the mean were eliminated

14

Significance Tests

15

Welch’s t-test results

UnusedResource,
and UselessParent
did not provide
significant results.

Fig. 8: Energy consumption for Acrylic Paint.

Fig. 9: Energy consumption for Simple Gallery.

TABLE IV: Significance Welch’s t-test results

Application Pattern Test p-value

Loop - Habit Tracker
Overdraw -0.56 .5784
UnusedResources -0.83 .4121
All -0.08 .9362

Writeily Pro

Overdraw -0.10 .9180
UnusedResources -0.03 .9790
ViewHolder 3.02 .0038
UselessParent 0.20 .8434
All 2.93 .0049

Talalarmo
DrawAllocation 4.18 .0001
WakeLock 4.43 < .0001
All 2.16 .0353

GnuCash
ObsoleteLayoutParam 2.57 .0127
Recycle 2.55 .0140
All 2.47 .0164

AcrylicPaint
DrawAllocation 0.64 .5221
Overdraw 45.88 < .0001
All -5.84 < .0001

Simple Gallery Overdraw -4.04 .0010

improvement (IMP) compared to the original consumption
(x̄fixed

�x̄

original

x̄

original

), and the column Savings, which provides
the number of minutes of battery life saved after repeating
the same usage of the application during 24 hours.

For example, the application GnuCash in Table III presents
5 rows, each for a different tested version of the application
and for the blank application. The fixed version for the

Recycle pattern has 28 experiments (n) which on average (x̄)
consumed 194.3J with a standard deviation (s) of 1.44 and
a p-value for the normality test of 0.32. Significance tests
presented in Table IV, show that this version of GnuCash
can significantly reduce energy consumption, since the p-value
obtained with the Welch’s t-test is 0.0140 which is lower
than our significance level ↵ = 0.05. All fixed versions that
passed the significance level were reported in Table V. The
table shows that this version of the application provided a
MD of �1.28J, which means that it saved 1.28J, providing an
improvement of 0.65% over the original version. This means
that after 24 hours of using the app, the battery could last
approximately 9 more minutes. The same analysis can be made
with the other applications.

V. DISCUSSION

Results show that ViewHolder, DrawAllocation, WakeLock,
ObsoleteLayoutParam, and Recycle are patterns that need to
be taken into account to develop an energy efficient mobile
application. ViewHolder is the pattern with the greatest impact,
with an improvement of approximately 5% in Writeily Pro.
The original version consumed 119.7J while it consumed
114.3J after being modified. This translates into 65 minutes of
savings after 1 day of usage (see Table V). When considering
a usage of 3.75 hours, this would translate in extra 10 minutes,
without affecting user experience.

DrawAllocation also provides an interesting improvement.
Although it occurred in a tiny part of the user interaction in
Talalarmo, we observed an improvement of 1%. DrawAlloca-
tion was also tested with Acrylic Paint but it did not have a
statistically significant improvement. The fix affected the color
picker redraw routine. Using the Android developer options to
debug view updates, we can see that redraw is only happening
a single time when a new color is chosen. The impact of this
fix in the overall execution was minimal, which might have
been the reason for not having significant changes in energy
consumption.

Fixing incorrect WakeLock usage also provided an improve-
ment of 1%. In the original version of Talalarmo, the wake
lock was not being properly released which could have lead
to energy drain in particular cases. For instance, when the
application is no longer in the alarm mode and the wake lock
was not properly released, the device cannot activate a lower
power state. This would consume energy unnecessarily but,
given the nature of our tests, such a scenario is not being
effectively tested. Thus, the effect size is expected to be higher
in a real case scenario.

ObsoleteLayoutParam and Recycle anti-patterns were found
in the application GnuCash. Although results showed a small
effect size, with improvements of less than 1% (see Table V),
they were statistically significant, as shown in Table IV. After
analyzing the changes made to fix ObsoleteLayoutParam,
we saw that it only required removing two obsolete view
attributes. One in a list view and another in a list item. Thus, a
big effect was not expected from this optimization. Still, for a
more energy efficient practice, this issue should be considered.

Effect Size
TABLE V: Effect size of significant patterns

Application Pattern MD Cohen’s d IMP (%) Savings (min)

Writeily Pro ViewHolder # -5.39 -0.78 4.50 65
All # -5.42 -0.76 4.53 65

Talalarmo
DrawAllocation # -0.86 -1.11 1.47 21
WakeLock # -0.85 -1.17 1.46 21
All # -0.48 -0.57 0.82 12

GnuCash
ObsoleteLayoutParam # -1.41 -0.67 0.72 10
Recycle # -1.28 -0.66 0.65 9
All # -1.53 -0.64 0.78 11

Acrylic Paint Overdraw " 1.42 1.64 -2.26 -33
All " 1.37 1.51 -2.18 -31

Simple Gallery Overdraw " 3.08 1.04 -2.11 -30

Fixing incorrect WakeLock usage also provided an improve-
ment of 1%. In the original version of Talalarmo, the wake
lock was not being properly released which could have lead
to energy drain in particular cases. For instance, when the
application is no longer in the alarm mode and the wake lock
was not properly released, the device cannot activate a lower
power state. This would consume energy unnecessarily but,
given the nature of our tests, such a scenario is not being
effectively tested. Thus, the effect size is expected to be higher
in a real case scenario.

ObsoleteLayoutParam and Recycle anti-patterns were found
in the application GnuCash. Although results showed a small
effect size, with improvements of less than 1% (see Table V),
they were statistically significant, as shown in Table IV. After
analyzing the changes made to fix ObsoleteLayoutParam,
we saw that it only required removing two obsolete view
attributes. One in a list view and another in a list item. Thus, a
big effect was not expected from this optimization. Still, for a
more energy-efficient practice, this issue should be considered.
UI changes during the application development and obsolete
attributes can be easily forgotten. This is a common issue,
since it does not affect the UI appearance. Regarding Recycle,
the issue occurred when accessing the color of an account.
GnuCash allows the user to create several accounts. Each
account can be customized with a different color. To get the
account’s color options a TypedArray needs to be accessed.
The issue lay in the fact that TypedArray was not being
closed after it had been accessed. This only happens when a
user opens the settings of an account. Regardless, it was able
to have significant impact on energy consumption, according
to the results of the Welch’s t-test in Table IV.

Surprisingly, after fixing Overdraw, applications ended up
consuming more energy. Although Overdraw can create a
laggy UI, fixing it can lead to more energy consumption. In
the applications Acrylic Paint and Simple Gallery, it decreased
battery life approximately 30 minutes after one day of usage.
Having a simple UI layout hierarchy is always a good practice,
but adding extra code to avoid Overdraw requires processing,
which might not be worth it, depending on the scenario.

When the application has a view that remains active for a
considerable amount of time, this view will have to redraw

itself several times. In this case, having an efficient redraw is
important, and fixing Overdraw is expected to create interest-
ing results. On the other hand, if a view is being created several
times but does not remain active for a reasonable amount
of time, fixing Overdraw might be creating an unnecessary
overhead during the creation of the view. Since modeling user
behavior is not a trivial task, in our experiments the time a
user spends in a view is not being considered. Thus, views
with long lifetime were not explored.

UnusedResources and UselessParent did not have any sig-
nificant effect, as showed by the Welch’s t-test in Table IV.
UnusedResources was tested in the applications Loop - Habit
Tracker and Writeily Pro. Having unused resources in the
application can increase build time, APK size, and complexity
of project maintenance. Thus, it is still an anti-pattern to be
considered, although it does not affect energy consumption.
UselessParent was tested in the application Writeily Pro. Since
the test is focusing in common use case scenarios rather than a
particular anti-pattern, it is possible that UselessParent was not
a relevant issue in this scenario. This means that optimization
was not necessary in this particular case, but it can still be
useful in other applications and scenarios.

It is interesting to note that in a few cases, improvements
were higher after fixing a single anti-pattern than after fixing
all of them (e.g., Talalarmo). The main reason for this lies
in the fact that experiences are prone to random variations
related with the power meter and the mobile device. Thus,
results may change from experiment to experiment, and effect
size measures are not very precise. Tests show that there is
a significant effect on energy consumption after using these
patterns, although the effect size may vary.

The results for the blank application show that in some
experiments a great part of energy is consumed in the exper-
imental setup. Analyzing Table III, regarding the application
Acrylic Paint, the interaction script running with the original
version consumed on average 62.68J, whereas on the blank
application consumed 52.93J on average. This means that
the interaction script consumed 84% of the total energy
consumption, leaving only 16% for optimization. The least
affected application by the interaction script was Loop - Habit
Tracker, consuming only 26% of the total energy consumption.

16

View Holder has the biggest impact 😀 while
Overdraw increased energy consumption 😕

Research Questions
RQ1: Can programming practices be blindly applied in order to improve

energy efficiency in an Android application?
Yes, apps had energy efficiency improved without changing the
feature set and without requiring previous knowledge of the app.

RQ2: Do best practices for performance improvement also improve energy
efficiency?

Not necessarily. While five optimizations improved energy
efficiency, two did not affect, and one had a negative impact.

RQ3: Do these best practices actually have an impact on real mature Android
applications?

Yes, three out of six real apps improved energy efficiency.

17

Conclusions & Future Work
• Anti-patterns ViewHolder, DrawAllocation,
WakeLock, ObsoleteLayoutParam, and Recycle have
to be considered when developing energy-efficient
apps

• Extend the study to other optimizations

• Automatic refactoring (Autorefactor, FB pfff, Walkmod,
Kadabra?)

• Label mobile applications with respect to energy
efficiency

18

Hypothesis

Performance based optimizations
can be used to ship energy efficient
Android applications.

3

Effect Size
TABLE V: Effect size of significant patterns

Application Pattern MD Cohen’s d IMP (%) Savings (min)

Writeily Pro ViewHolder # -5.39 -0.78 4.50 65
All # -5.42 -0.76 4.53 65

Talalarmo
DrawAllocation # -0.86 -1.11 1.47 21
WakeLock # -0.85 -1.17 1.46 21
All # -0.48 -0.57 0.82 12

GnuCash
ObsoleteLayoutParam # -1.41 -0.67 0.72 10
Recycle # -1.28 -0.66 0.65 9
All # -1.53 -0.64 0.78 11

Acrylic Paint Overdraw " 1.42 1.64 -2.26 -33
All " 1.37 1.51 -2.18 -31

Simple Gallery Overdraw " 3.08 1.04 -2.11 -30

Fixing incorrect WakeLock usage also provided an improve-
ment of 1%. In the original version of Talalarmo, the wake
lock was not being properly released which could have lead
to energy drain in particular cases. For instance, when the
application is no longer in the alarm mode and the wake lock
was not properly released, the device cannot activate a lower
power state. This would consume energy unnecessarily but,
given the nature of our tests, such a scenario is not being
effectively tested. Thus, the effect size is expected to be higher
in a real case scenario.

ObsoleteLayoutParam and Recycle anti-patterns were found
in the application GnuCash. Although results showed a small
effect size, with improvements of less than 1% (see Table V),
they were statistically significant, as shown in Table IV. After
analyzing the changes made to fix ObsoleteLayoutParam,
we saw that it only required removing two obsolete view
attributes. One in a list view and another in a list item. Thus, a
big effect was not expected from this optimization. Still, for a
more energy-efficient practice, this issue should be considered.
UI changes during the application development and obsolete
attributes can be easily forgotten. This is a common issue,
since it does not affect the UI appearance. Regarding Recycle,
the issue occurred when accessing the color of an account.
GnuCash allows the user to create several accounts. Each
account can be customized with a different color. To get the
account’s color options a TypedArray needs to be accessed.
The issue lay in the fact that TypedArray was not being
closed after it had been accessed. This only happens when a
user opens the settings of an account. Regardless, it was able
to have significant impact on energy consumption, according
to the results of the Welch’s t-test in Table IV.

Surprisingly, after fixing Overdraw, applications ended up
consuming more energy. Although Overdraw can create a
laggy UI, fixing it can lead to more energy consumption. In
the applications Acrylic Paint and Simple Gallery, it decreased
battery life approximately 30 minutes after one day of usage.
Having a simple UI layout hierarchy is always a good practice,
but adding extra code to avoid Overdraw requires processing,
which might not be worth it, depending on the scenario.

When the application has a view that remains active for a
considerable amount of time, this view will have to redraw

itself several times. In this case, having an efficient redraw is
important, and fixing Overdraw is expected to create interest-
ing results. On the other hand, if a view is being created several
times but does not remain active for a reasonable amount
of time, fixing Overdraw might be creating an unnecessary
overhead during the creation of the view. Since modeling user
behavior is not a trivial task, in our experiments the time a
user spends in a view is not being considered. Thus, views
with long lifetime were not explored.

UnusedResources and UselessParent did not have any sig-
nificant effect, as showed by the Welch’s t-test in Table IV.
UnusedResources was tested in the applications Loop - Habit
Tracker and Writeily Pro. Having unused resources in the
application can increase build time, APK size, and complexity
of project maintenance. Thus, it is still an anti-pattern to be
considered, although it does not affect energy consumption.
UselessParent was tested in the application Writeily Pro. Since
the test is focusing in common use case scenarios rather than a
particular anti-pattern, it is possible that UselessParent was not
a relevant issue in this scenario. This means that optimization
was not necessary in this particular case, but it can still be
useful in other applications and scenarios.

It is interesting to note that in a few cases, improvements
were higher after fixing a single anti-pattern than after fixing
all of them (e.g., Talalarmo). The main reason for this lies
in the fact that experiences are prone to random variations
related with the power meter and the mobile device. Thus,
results may change from experiment to experiment, and effect
size measures are not very precise. Tests show that there is
a significant effect on energy consumption after using these
patterns, although the effect size may vary.

The results for the blank application show that in some
experiments a great part of energy is consumed in the exper-
imental setup. Analyzing Table III, regarding the application
Acrylic Paint, the interaction script running with the original
version consumed on average 62.68J, whereas on the blank
application consumed 52.93J on average. This means that
the interaction script consumed 84% of the total energy
consumption, leaving only 16% for optimization. The least
affected application by the interaction script was Loop - Habit
Tracker, consuming only 26% of the total energy consumption.

16

View Holder has the biggest impact ! while
Overdraw increased energy consumption "

Research Questions
RQ1: Can programming practices be blindly applied in order to improve

energy efficiency in an Android application?
Yes, apps had energy efficiency improved without changing the
feature set and without requiring previous knowledge of the app.

RQ2: Do best practices for performance improvement also improve energy
efficiency?

Not necessarily. While five optimizations improved energy
efficiency, two did not affect, and one had a negative impact.

RQ3: Do these best practices actually have an impact on real mature Android
applications?

Yes, three out of six real apps improved energy efficiency.

17

19

Full Paper

Performance-based Guidelines for Energy-
efficient Mobile Applications

Luis Cruz, Rui Abreu

All source code and
collected data

20

