
Leafactor: Improving Energy Efficiency of Android
Apps via Automatic Refactoring

Luis Cruz

University of Porto

and HASLab/INESC TEC

Porto, Portugal

luiscruz@fe.up.pt

Rui Abreu

Instituto Superior Técnico, University of Lisbon

and INESC-ID

Lisbon, Portugal

rui@computer.org

Jean-Noël Rouvignac

ForgeRock

Grenoble, France

jn.rouvignac@gmail.com

Abstract—Leafactor is a tool to automatically improve the
energy consumption of Android apps. It does so by refactoring
the source code to follow a set of patterns known to be energy
efficient. The toolset was validated using 222 refactorings in 140
open-source apps. Changes were submitted to the original apps
by creating pull requests to the official projects.

Keywords-Green Computing; Mobile Computing; Refactoring;

I. INTRODUCTION

Mobile devices are the most popular form of pervasive com-

puting nowadays. As a consequence, users need to charge their

devices often to prevent their inoperability, making battery life

a major drawback. Hence, it is important to provide developers

with proper toolsets to develop energy efficient apps.

Previously, we have identified code optimizations that may

have a significant impact on the energy consumption of

Android apps [1]. However, ascertain that code is complying

with these patterns is time-consuming and prone to errors. In

this paper, we introduce Leafactor — a tool to automatically

refactor Android apps to improve energy efficiency. In addi-

tion, the toolset has the potential to serve as an educative tool

to developers to understand what patterns to follow to develop

energy efficient apps.

There are state-of-the-art tools that provide automatic refac-

toring for Java apps (for instance, AutoRefactor1, Walkmod2,

Facebook pfff 3, Kadabra4). Although these tools are very

popular amongst the Java community, they do not provide

energy related rules.

Despite the fact that recent work has addressed code trans-

formations to energetically optimize mobile apps [1]–[4], only

a few approaches offer automatic refactoring in the context

of mobile energy efficiency. As an example, previous work

analyzed the event flow graph to optimize resource usage (e.g.,

GPS, Bluetooth) being able to reduce energy consumption [5].

Although this approach gives developers an insight of how to

refactor the code base, it is not fully automated yet. Other

studies have studied and applied automatic refactorings in

1http://autorefactor.org/ (March 3, 2017) – An Eclipse plugin to automati-
cally refactor Java code bases.

2http://walkmod.com/ (March 3, 2017)
3http://github.com/facebook/pfff/ (March 3, 2017)
4http://specs.fe.up.pt/tools/kadabra/ (March 3, 2017)

AutoRefactor

Java
files

XML
files

Java Refactor
Engine

XML Refactor
Engine

Android Project

>_ CLIPlugin UI

Fig. 1. Leafactor architecture diagram.

Android apps [6]. However, these optimizations are not mobile

specific.

II. REFACTORING ANDROID APPS

Leafactor statically analyzes and transforms code to im-

plement Android-specific, energy-efficient optimizations. The

architecture of the toolset is depicted in Figure 1. There are

two engines: one to handle Java files and another to handle

XML files. The refactoring engine for Java was implemented

by leveraging the open-source project AutoRefactor.

AutoRefactor provides several common code cleanups to

help delivering “smaller, more maintainable and more expres-

sive code bases”. Eclipse Marketplace reports 1180 AutoRefac-
tor installs in 2016. Under the hood, AutoRefactor integrates

a handy and concise API to manipulate Java Abstract Syntax
Trees (AST). The Java optimizations offered by Leafactor are

also integrated in AutoRefactor. So far, this integration requires

the use of Eclipse IDE, but we intend to deliver Leafactor as

a standalone application.

Since XML refactorings are not part of AutoRefactor, an-

other engine needed to be developed. At the moment, only a

single XML optimization is offered — ObsoleteLayoutParam.

Leafactor receives a single file, a package, or a whole

Android project as input and looks for eligible files, i.e., Java

2017 IEEE/ACM 4th International Conference on Mobile Software Engineering and Systems (MOBILESoft)

978-1-5386-2669-6/17 $31.00 © 2017 IEEE

DOI 10.1109/MOBILESoft.2017.21

142

2017 IEEE/ACM 4th International Conference on Mobile Software Engineering and Systems (MOBILESoft)

978-1-5386-2669-6/17 $31.00 © 2017 IEEE

DOI 10.1109/MOBILESoft.2017.21

201

2017 IEEE/ACM 4th International Conference on Mobile Software Engineering and Systems (MOBILESoft)

978-1-5386-2669-6/17 $31.00 © 2017 IEEE

DOI 10.1109/MOBILESoft.2017.21

205

7. Commit and
push changes

1. Collect metadata
from F-droid 2. Fork Repo 3. Select

Optimization

4. Create
branch

5. Apply
Leafactor

6. Validate
changes

8. Submit PR

Fig. 2. Experiment’s procedure for a single app.

TABLE I
SUMMARY OF REFACTORING RESULTS

Optimization Rule W R DA VH OLP
Total Refactors 1 58 0 7 156
Affected Projects 1 23 0 5 30
Affected Projects (%) 1 16 0 4 21
Wakelock (W), Recycle (R), DrawAllocation (DA),
ViewHolder (VH), ObsoleteLayoutParam (OLP)

or XML source files that are then automatically analyzed and

new compilable and optimized versions are produced.

a) Supported optimizations: Android apps can benefit up

to 5% of additional battery life in common use case scenarios;

as demonstrated by our previous study [1]. The following

optimizations are supported by the toolset. We do not detail

these optimizations because of lack of space; for interested

readers, refer to [1].

DrawAllocation: Allocations within drawing logic.

WakeLock: Incorrect wake lock usage.

Recycle: Failing to release singleton resources.

ObsoleteLayoutParam: Unnecessary layout parameters.

ViewHolder: List should use View Holder pattern to reuse

previous processing.

III. EMPIRICAL RESULTS

We have analyzed 140 open-source Android apps using

Leafactor. These apps are available on F-droid — a catalog

for free and open-source apps. We have limited our search to

those published before Nov 27, 2016 and whose code could

be found on Github.

Leafactor analyzed 6.79GB of Android projects in 4.5
hours, totaling 15308 Java files and 15103 XML files. The

largest project in terms of Java files is TinyTravelTracker
(1878), while NewsBlue is the largest in terms of XML files

(2109). Refactoring rules were applied separately.

Leafactor yielded a total of 222 refactorings, which were

submitted to the original repositories as Pull Requests (PRs).
For a given project, a PR was created for each applied

optimization, resulting in 59 PRs. This is a difficult process,

since each project has different contributing guidelines. Nev-

ertheless, by the time of writing, 16 PRs had been successfully

merged for deployment. We expect this number to grow.

Table I presents the results per optimization rule. Obsolete-
LayoutParam was found in 21% of projects (156 refactorings),

followed by Recycle which was found in 16% (58 transforma-

tions). DrawAllocation and Wakelock only showed marginal

impact.

ObsoleteLayoutParam and Recycle are frequent as they

affect common Android API usage that can be found in

most projects (e.g., database cursors). Leafactor is particularly

interesting for these cases.

It was expected that developers were already aware of

DrawAllocation. Still, we were able to manually spot alloca-

tions that were happening inside a drawing routine. Neverthe-

less, those allocations used dynamic values to initialize the ob-

ject. In our implementation, we scope only allocations that will

not change between iterations. Covering those missed cases

would require updating the allocated object in every iteration.

While spotting these cases is relatively easy, refactoring would

require better knowledge of the class that is being instantiated.

Similarly, WakeLocks are very complex mechanisms and fixing

all misuses still requires further work.

In the case of ViewHolder, although it only impacted 4% of

the projects, we believe it has to do with the fact that 1) some

developers already know this pattern due to its performance

impact, and 2) many projects do not implement dynamic list

views. ViewHolder is the most complex pattern we have in

terms of lines of code (LOC) — a simple case can require

changes in roughly 35 LOC. Although changes are easily

understandable by developers, writing code that complies with

ViewHolder pattern is not intuitive.

IV. CONCLUSION

Empirical results showed that integrating Leafactor in the

development stack of Android projects will help developers

ship energy efficient code. The toolset works with Java and

XML files. It was able to successfully perform 222 refactorings

that were combined in 59 PRs in the Github repositories of

the apps. We plan to distribute Leafactor as a standalone

application. At the moment, the toolset is still in development

but XML and Java refactorings’ source is already publicly

available56.

REFERENCES

[1] L. Cruz and R. Abreu, “Performance-based guidelines for energy-efficient
mobile applications,” in Submitted to MOBILESoft’17.

[2] C. Sahin, L. Pollock, and J. Clause, “From benchmarks to real apps:
Exploring the energy impacts of performance-directed changes,” Journal
of Systems and Software, 2016.

[3] D. Li and W. G. Halfond, “Optimizing energy of http requests in android
applications,” in Proc. of DeMobile’15. ACM.

[4] D. Li, S. Hao, J. Gui, and W. G. Halfond, “An empirical study of the
energy consumption of android applications,” in Proc. of ICSME’14.
IEEE.

[5] A. Banerjee and A. Roychoudhury, “Automated re-factoring of android
apps to enhance energy-efficiency,” in Proc. of MobileSoft’16, ser. MO-
BILESoft ’16.

[6] C. Sahin, L. Pollock, and J. Clause, “How do code refactorings affect
energy usage?” in Proc. of ESEM’14. ACM.

5XML: https://github.com/luiscruz/android-view-refactor/
6Java: https://github.com/luiscruz/AutoRefactor

143202206

