
Dataset of government-developed OS software

Ilma Jaganajec Angelos-Ermis Mangos Marvin Blommestijn Pravesha Ramsundersingh
TU Delft TU Delft TU Delft TU Delft
4911253 5578337 5406019 4834534

Abstract

Sustainability in software engineering is crucial when
it comes to reducing the environmental footprint of
our society. Therefore, creating more efficient and
long-lasting software plays a key role in achieving
this goal. Governments keep a lot of their software
open-source, promoting transparency together with
collaboration and showing their commitment to ac-
cessibility, accountability, and long-term sustainabil-
ity. However, government open-source projects often
lack accessibility, since datasets are often not avail-
able, there exist language barriers and often an ab-
sence of incentives for broad usage. These reasons
make it hard for researchers to assess the sustain-
ability of these government software projects. For
this reason, this project proposes a dataset based on
government-developed open-source software to make
it more accessible for researchers researching sustain-
ability practices of government software. The dataset
has a focus on sustainability metrics based on de-
velopment history, buildability and presence of doc-
umentation. Additionally, we propose a dashboard
to visualize various repository metrics of government
software projects, providing insights into the overall
health, progress, and sustainability of their software
projects. By exploring different open-source projects
from multiple different countries, this dataset and
dashboard provide insights into the sustainability of
government software, making improvements in sus-
tainability practices more accessible to researchers
and governments.

1 Introduction

Our society becomes more dependent on digital in-
frastructure, making the environmental and social
impacts of software development under more scrutiny.
Recent digitalization strategies by the European
Union and individual member states have empha-
sized the importance of reusability and transparency
in public sector software systems ([1]). Addition-
ally, there have been regulations from the European

Union such as the Interoperable Europe Act which
mandate the reuse and sharing of open-source digi-
tal solutions among public administrations ([2]). For
this reason, there is a strong need for sustainability
in software engineering practices, as it is crucial for
minimizing our environmental carbon footprint and
to ensure that our systems remain relevant and usable
in the long-term. Therefore, Government-developed
software plays an important role in promoting sus-
tainable software engineering practices, since it can
support sustainability through methods such as open-
source development. Moreover, it can also avoid du-
plication of efforts in tasks and support long-term
maintenance. Unfortunately, there is currently a big
gap in understanding the sustainability practices of
these government open source projects. This reduces
the ability to evaluate the long-term impact of these
projects in its effectiveness, and areas for improve-
ment.

Several challenges make it hard to study the soft-
ware practices of government-developed software. In
the first place, there is a lack of accessible datasets
that show insights into government development
practices. Moreover, there are often language bar-
riers since projects are documented in different lan-
guages, limiting global collaboration and understand-
ability of projects. This language barrier also leads to
a lack of incentives to adopt and reuse government-
developed projects, since the documentation is often
unclear and not accessible. Furthermore, without a
clear picture of the current state of these projects,
it is hard for developers and policymakers to iden-
tify areas of improvement to adjust their practices to
a more sustainable manner. For these reasons, it is
difficult to assess the sustainability practices within
government software projects, increasing the need for
clear, centralized data from which insights can be eas-
ily extracted.

In this project we aim to address these challenges
by providing a centralized dataset that contains sus-
tainability metrics of government repositories across
different countries, making it easier for researchers
studying the sustainability practices within govern-
ment software. Additionally, we provide a dashboard

1



that contains insights derived from these metrics, al-
lowing governments to view their strengths and weak-
nesses in terms of sustainable software engineering
practices. By providing this dataset together with the
dashboard, we aim to promote more sustainable soft-
ware engineering practices within government soft-
ware projects, encouraging governments to not only
build functional software but also software that is sus-
tainable in the long term.

2 Methodology

2.1 Data Collection

We collected repositories from government organiza-
tions across five countries: the United States, the
Netherlands, Greece, Germany, and France. The
repositories were sourced from GitHub and GitLab
using the respective platforms’ APIs. In total, 1299
repositories were gathered, reflecting a broad spec-
trum of projects that are important for public admin-
istration efficiency, transparency, and citizen engage-
ment. These repositories were selected based on use-
cases and significance. Examples include the source
code for the Netherlands’ DigiD app [3] for secure
digital identity management that is used by millions
of users, the USA’s centers for disease control and
prevention (CDCgov [4]), Germany’s Corona Warn
App [5] for public health monitoring, France’s udata-
gouvfr [6] for open data access, and Greece’s open-
gov for transparent governance [7] to name a few. By
focusing on such a variety of projects, we capture a
dataset that tries to represent the real-world use cases
as best as possible.

2.2 Sustainability Evaluation Frame-
work

In order to compare the sustainability between the
five countries, we evaluated the repositories of each
country according to five dimensions of sustainabil-
ity using the sustainability Awareness Framework
(SusAF) [8].

2.2.1 Technical

The technical dimension tries to give an indication
of the resilience of the software. Ideally we want to
find patterns that could indicate potential areas of
improvement in terms of documentation, modularity
adaptability, etc. Our technical sustainability assess-
ment is built on a two-step process: first, we system-
atically gather raw repository data from government-
developed open-source software, and then we apply

a suite of automated analyses to compute detailed
technical metrics.
For Data Collection:

1. Repository Identification: We start by read-
ing a curated CSV file that lists government
repositories along with key metadata such as
country, organization, and repository URL. This
ensures our dataset covers multiple countries
which includes the United States, the Nether-
lands, Greece, Germany, and France.

2. Repository Cloning: Each repository is
cloned locally using Git. This step enables us
to inspect the complete codebase, including all
source files and supporting documents.

3. File Extraction: Using a targeted search based
on file extensions (e.g., Python, JavaScript, Java,
etc), we collect all relevant code files while ex-
cluding non-code directories (such as vendor li-
braries or build directories). This extraction is
crucial for subsequent code analysis.

For Metric Computation and Analysis:

1. Sustainability Scoring via AI: A sample of
code is aggregated and submitted to an AI model
(Gemini 2.0 Flash) that returns a comprehen-
sive set of sustainability scores. These scores
cover dimensions such as documentation quality,
testing robustness, modularity and design, error
handling, security practices, scalability poten-
tial, environmental efficiency, and social inclu-
siveness. Additionally, the model highlights crit-
ical issues and offers improvement suggestions.

2. Test Coverage Analysis: By searching for test
files and test patterns, the script measures the
test-to-code ratio and detects the usage of com-
mon testing frameworks. This helps us evaluate
the robustness of the testing practices in place.

3. Dependency and Structure Evaluation: We
analyze dependency management by parsing
configuration files (such as ’package.json’ or ’re-
quirements.txt’) and examine repository struc-
ture by checking for the presence of essential files
(like README, license, CI configurations, etc).
The structural score is derived from the avail-
ability and quality of these components.

4. Code Pattern Analysis: Using regular expres-
sions, our system scans the code for sustainable
practices (such as well-documented comments,
comprehensive test cases, modular design, and
effective error handling) and flags unsustainable

2



patterns (like hard-coded credentials or excessive
code smells).

For Visualization and Reporting:

1. Radar Charts: These illustrate the overall sus-
tainability performance of each country by dis-
playing an aggregation of key metrics.

2. Bar and Pie charts: Detailed views of code
quality, complexity, test coverage, and reposi-
tory structure are provided, allowing users to
pinpoint strengths and weaknesses in the tech-
nical sustainability of the repositories.

This process is end-to-end, as we go from cloning
the repos and parsing code files to applying AI-driven
analysis, providing a sufficient framework and view
of how government-developed open-source software
measures up against modern technical sustainability
standards.

2.2.2 Environmental

Environmental sustainability involves minimizing
ecological impact through many factors such as re-
source efficiency, carbon footprint and total energy
consumption. Our methodology is designed to cap-
ture both the dynamic and static aspects of a repos-
itory’s energy consumption and its subsequent en-
vironmental impact. At a dynamic level, we assess
the energy efficiency of runnable repositories by ex-
ecuting them locally and measuring real-time energy
use with CodeCarbon [9] that additonally estimate
the associated carbon emissions compared to profil-
ers like Energibridge [10]. Runnability is determined
by evaluating the dependency files we detected in
the technical analysis. Dockerfiles, tech stack files
(requirements.txt, package.json make files etc), or
README instructions gave an indication of poten-
tially runnable repositories. Profiling all repositories
was impractical due to time intensive execution, de-
pendency setup, and cloning, so instead we selected
the five most promising repository projects for each
country according to a runability score. This score
is calculated by integrating several factors: the pres-
ence of dependency management files, the inclusion of
test suites (and their ratio relative to the code), mea-
sured complexity within acceptable bounds, commit
frequency indicating active maintenance (i.e. used
in real life), code modularity derived from sustain-
able coding practices, environmental efficiency as as-
sessed by Gemini scores, and adherence to size con-
straints. On the static side, our methodology inte-
grates a language-based energy efficiency estimation.
We leverage the findings from [11], which provides

energy consumption coefficients per various program-
ming languages. This approach assumes that the lan-
guage’s inherent energy efficiency, as captured by its
file size-energy mapping, serves as an indirect indi-
cator of potential energy consumption. For example,
languages like C or C++ generally exhibit lower en-
ergy consumption per megabyte compared to higher-
level languages such as Python.

With this indirect indicator we hope to achieve the
same results as with our measurements and validate
our proposed solution.

2.2.3 Economical:

To address the economical dimension of sustain-
ability, this project aims to identify potential re-
dundancies and similarities between government-
developed open-source software repositories across
different countries. By clustering and comparing
repositories based on various metrics such as com-
munity engagement, popularity, and development ac-
tivity, our goal is to detect overlapping projects that
may be performing similar tasks independently. Re-
ducing redundancy through this approach can po-
tentially decrease the economic costs associated with
software development, such as the number of de-
velopers required, server storage, and maintenance
expenses. Countries can use previous implementa-
tions of others to improve efficiency, collaboration,
and overall sustainability in their software engineer-
ing practices. This methodology may also uncover
potential overlapping categories of software projects,
such as public health, COVID-19 tracking systems,
and data management tools, highlighting areas where
resources could be combined or improved.

2.2.4 Social

The social aspect of software engineering within gov-
ernment software projects has its primary focus on
the social dynamics within the developers within a
project. Here we aimed to assess how developers in-
teract and collaborate through evaluations of senti-
ment and inclusiveness. By analyzing GitHub com-
ments, we can gather insights into the social dimen-
sion of a software project. This includes character-
istics such as contributor diversity, community prac-
tices and communication patterns. Moreover, we can
assess how welcoming, engaged, and sustainable these
government developers’ communities are from a social
perspective.

3



2.2.5 Individual

The individual dimension of software engineering fo-
cuses on the personal and professional sustainability
of contributors involved in government open-source
software projects. Here we evaluate indicators such
as engagement levels and community openness to col-
laboration in order to understand the social health of
these projects for individual developers. We provide
metrics that help to assess if government project de-
velopers are welcoming to contributors, and if they
are empowered to participate consistently and main-
tain the software over time, ultimately leading to a
stronger and more sustainable ecosystem.

2.3 Data Visualization

The sustainability dimensions and corresponding
metrics were visualized using an interactive dash-
board built with Streamlit. This dashboard provides
a concise yet comprehensive overview of the five eval-
uated sustainability dimensions—Technical, Environ-
mental, Economical, Social, and Individual—through
intuitive visual representations such as radar charts,
bar graphs, pie charts, and treemaps mentioned in
3.2.1. Users can interactively filter the data by coun-
try or organization, enabling targeted insights into
repository performance and highlighting differences
and similarities between countries. By presenting
sustainability metrics clearly, our users could gain in-
sights into the strengths and weaknesses of the vari-
ous OSS projects. The data that is visualized is our
proposed dataset that could also be found on our
github [12] to use for other purposes.

3 Results

3.1 Technical

Our technical sustainability assessment evaluated
government repositories across five countries (the
United States, the Netherlands, Greece, Germany,
and France) using multiple metrics related to code
quality, maintainability, and development practices.
The analysis provides valuable insights into the tech-
nical sustainability of government-developed open-
source software.

Figure 6 presents hexagon radar charts for each
country (which is an aggregation of all the more so-
phisticated metrics), visualizing their performance
across key technical sustainability metrics. These
visualizations reveal distinct patterns in how differ-
ent governments approach technical sustainability in
their software development practices.

We can see from the radar charts that The USA
and the Netherlands have the most balanced metrics,
with Germany have the least balanced overall. The
Netherlands seem to excel in documentation qual-
ity as in average, their repositories have the highest
amount of documenting while the other countries lag
behind. All countries also have low testing standards
with the USA leading the group (with the highest).

Below in figure 7 you can see in more detail just
the technical metrics.

Greece and the Netherlands have the highest over-
all metrics in the technical dimensions, with Germany
having the lowest overall. All the codebases in the
dataset seem to be highly modularized, which is good
in terms of maintainability.

The sustainability scores for each country are sum-
marized in Table 2.

Country Score
France 62.7
Germany 53.3
Greece 60.0
The Netherlands 66.7
The USA 63.7

Table 1: Sustainability scores for each country

It is important to note that these results might not
paint the full picture in terms of OSS for each country
(specially Germany). There are many organizations
that work under the governments and provide OSS
but we have not included all of them, as computing
these metrics takes time and the organizations don’t
all have a common api to scrape (or clone) the repos-
itories from. This means that a lot don’t host their
repos in Github or Gitlab and making a custom solu-
tion for all of them induces a heavy overhead on our
workload which is beyond the scope of the project.
Instead we provide the methods, scipts and toolchain
we used to compute our metrics, that can be used
to extend the dataset significantly, for someone with
more computational resources.

3.2 Environmental

For the dynamic assessment, CodeCarbon gave the
following result to monitor the average power con-
sumption and corresponding carbon emissions dur-
ing repository execution. Figure 1 shows the average
total power (in Watts) and average emissions (in kg
CO2) per country.

4



Figure 1: Measuring consumption with CodeCarbon

Our static analysis estimates the energy footprint
of repositories by mapping programming languages to
predetermined energy coefficients based on[11]. Fig-
ure 2 presents a stacked bar chart that breaks down
the assumed energy consumption by programming
language for each country. This figure reveals that
Governments should take into account what program-
ming language to use as can be seen that it can dra-
matically impact your energy consumption.

Figure 2: Static analysis

Additionally, Figure 3 illustrates the potential
runnability of the repositories by country. Approxi-
mately 45% of the projects were identified as runnable
based on the presence of indicators in the dependency
files, whereas the remaining 55% lacked such clear in-
dicators.

Figure 3: Potential runnability of repositories

Because 1 did not show clear patterns or indica-
tions to compare on we decided to also via the Gem-
iniFlash 2.0 evaluate the Enviromental impact of the
github OSS projects. We let the model estimate
this dimension by metrics like repository size, larger
sizes suggest higher storage energy costs, dependency
counts, more dependencies imply greater installation
and runtime resource use. We also categorized code
into three dimensions: high computation (e.g., ML
training, GPU usage, infinite loops), which signals
high energy demands; resource efficiency (e.g., gener-
ators, streaming, lazy evaluation), which reduces re-
source waste and thus energy use; and energy aware-
ness (e.g., power management, sleep modes), which
reflects intentional energy-saving design. These static
indicators complement CodeCarbon’s dynamic data,
offering a fuller picture of each repository’s environ-
mental impact. It gave the following results. Note
that a higher score in our analysis indicates better
performance which is slightly in line with our rough
estimates (france is the most consuming in 1). At
first sight, this seems to contradict Figure 2; how-
ever, a closer examination reveals that although the
Netherlands exhibits the highest volume—and, there-
fore, the highest consumption—it could be argued
that the Netherlands is relatively more efficient, as
demonstrated by Table 2.

Country Score
France 70.33
Germany 71.667
Greece 75.1677
The Netherlands 76
The USA 73.69

Table 2: Sustainability scores for each country using
Gemini Flash 2.0

5



3.3 Economical

To address the economical dimension of sustainabil-
ity, we implemented a two-step approach involving
clustering analysis and textual similarity detection to
identify potential redundancies within government-
developed open-source software repositories. Cluster-
ing analysis was applied to group projects based on
various numerical metrics such as community engage-
ment (number of contributors), popularity (number
of stars), development activity (commit frequency),
and collaboration metrics (merged pull request per-
centage, external contributions). The aim of this
clustering process is to detect overlapping projects
that may be performing similar tasks independently,
thereby highlighting areas where development efforts
could be consolidated. In addition to this, clustering
allows us to categorize projects with similar charac-
teristics, making it easier to identify which projects
are more active, popular, or collaborative, and which
may be obsolete or in need of improvement.

Complementary to clustering, we implemented a
textual similarity detection process using TF-IDF
vectorization to analyze the content-based similar-
ities between repositories. By comparing reposi-
tory names and descriptions, we generated a simi-
larity matrix that identifies repositories with over-
lapping purposes across different countries. This ap-
proach highlights potential redundancy by revealing
projects with similar functionalities that may be de-
veloped independently, often due to language bar-
riers, lack of accessibility, or unawareness of exist-
ing solutions. Moreover, this similarity analysis can
uncover broader categories of overlapping projects,
such as public health, COVID-19 tracking systems,
or data management tools. These findings can be
used to promote collaboration between countries, re-
duce economic costs associated with development and
maintenance, and improve the overall sustainability
of government software engineering practices.

The clustering results in Figure 4 reveal interesting
patterns in the distribution of projects across coun-
tries. Most repositories are populated within the
range of 0 to 100 stars and 0 to 100 contributors, indi-
cating that the majority of projects have limited pop-
ularity and medium-sized development teams. Ger-
many stands out with its repositories spreading fur-
ther across the x-axis (number of stars), suggesting
that German projects tend to attract higher public
attention, even though the number of contributors
remains relatively equal to other governments (be-
low 100). In addition to this, France has one outlier
repository with a significantly high number of con-
tributors but a low amount of stars (0-100), which

may indicate a project with heavy internal govern-
ment development but limited public recognition or
adoption. These results highlight potential inefficien-
cies where projects with high development efforts are
not widely used or where popular projects are not ad-
equately maintained, providing opportunities for im-
proving sustainability through collaboration or better
resource allocation.

Figure 4: Cluster Visualization by Government

Based on the similarity matrix, we will analyze
repository pairs with similarity scores above 0.5 as
shown in Figure 5 to identify projects that may be
addressing similar objectives. This involves manually
reviewing repository titles and descriptions to detect
overlapping themes and categories. While scraping or
thoroughly tracking all the code within these repos-
itories is not feasible within the current time con-
straints, examining similarities through names and
descriptions provides a practical starting point. This
approach will help uncover potential redundancies
and common areas of interest between countries,
highlighting opportunities for collaboration or con-
solidation of efforts.

The similarity analysis revealed several categories
of repositories that appear to address similar goals or
stem from shared origins. A recurring theme is that
many projects represent variations of the same soft-
ware, tailored to different systems or use cases — such
as portals, templates, or design frameworks — of-
ten within the same government body. For example,
the Dutch repositories MinBZK/design-system
and MinBZK/NL-design-system show high sim-
ilarity (0.87), as do MinBZK/mijn-bureau and
MinBZK/mijn-bureau-portal (0.86), suggesting
internal reuse of design elements or architecture.
Another clear theme is COVID-19–related appli-
cations, including notification apps (minvws/nl-
covid19-notification-app-android and corona-

6



Figure 5: Filtered Similarity Matrix where the
Threshold is above 0.5

warn-app/cwa-app-android, 0.54) and dash-
boards (minvws/nl-covid19-data-dashboard and
etalab/covid19-dashboard, 0.76), which reflect
how different governments independently developed
tools for similar pandemic-related needs. Techni-
cal overlaps also emerged, such as extensions for
the CKAN data platform (dataoverheid/ckanext-
donl and etalab/ckanext-etalab, 0.51), and
country-specific adaptations of the European open
data standard DCAT-AP (dataoverheid/DCAT-
AP-NL and GovDataOfficial/DCAT-AP.de,
0.84). These findings demonstrate both parallel ef-
forts and opportunities for alignment or code reuse,
pointing to potential efficiency gains through greater
awareness and collaboration across government open-
source ecosystems.

3.4 Social

The social side of software engineering refers to inter-
actions and collaborative behavior between develop-
ers working on a software development project. Good
communication and collaboration within software de-
velopment practices increase cohesion between de-
velopers and productivity, which, therefore, leads to
more success and sustainability of open-source com-
munities. Investigating the tone and inclusiveness
of developers within repositories can yield insights
into how well a community is fostering collaboration
within its project.

To assess the social well-being of software
projects within government open-source development
projects, we performed a sentiment analysis on com-
mit comments from the GitHub repositories of these
governments of different countries. This approach
is based on the methodology of the paper by [13],

where SentiStrength was used to evaluate the sen-
timent polarity of developer communication. The
SentiStrength approach assigns sentiment scores to
GitHub communication, with values ranging from
highly negative to highly positive. In this way, it
allows us to examine the social aspects of the devel-
opment processes of governments, quantify the emo-
tional tone of the repositories, and thus assess social
well-being.

To measure sentiment, we extracted commit com-
ments from the repositories and calculated the fol-
lowing metrics for both country-level aggregates and
individual repositories:

• Average Sentiment: Mean emotional tone;
higher values indicate more positive language in
communication.

• Positive and Neutral Ratios: The propor-
tion of comments classified as positive or neu-
tral, providing insight into the overall mood of
communication.

• Negative Sentiment: Indicates minimal con-
flicts.

Additionally, we complemented the sentiment data
with social indicators derived from repository meta-
data:

• Social Inclusiveness: Reflects the proportion
of contributors outside the core team.

• Community Engagement: Measures the ac-
tivity of the community and interaction over
time.

• Diversity Index: Quantifies contributor vari-
ability.

• Contributor Retention Rate: Indicates how
consistent developers are in being active within
the project.

• Governance Indicators: Binary flags for the
presence of a Code of Conduct and a Contribu-
tion Guide.

Table 3 demonstrates the aggregated sentiment
and social health metrics by country. The results
show that the Netherlands, together with Germany,
scored highly on average sentiment. Moreover, these
countries performed better than others on social in-
dicators such as inclusiveness and engagement. How-
ever, the United States showed the highest positive
sentiment ratio but had lower inclusiveness and con-
tributor retention.

7



3.5 Individual

To ensure that government-developed software can
achieve long-term impact, it must demonstrate in-
dividual sustainability. Individual sustainability fo-
cuses on the health and well-being of the developer
community around a software project, ensuring that
contributors can engage meaningfully, be easily in-
corporated, and maintain the project over time. To
make it easier to assess how different government soft-
ware projects perform in terms of individual sustain-
ability, we collected various metrics from the GitHub
repositories of the projects for our dataset. Although
these are technical attributes, they serve as indicators
for community health, openness, contributor experi-
ence, and long-term participation.

Table 4 in the appendix outlines the metrics we
extracted from the government repositories, together
with their interpretation from an individual sustain-
ability perspective. 5 Shows the evaluation on our
repositories.

We examined these metrics for multiple reposito-
ries across various countries, aiming to map the tech-
nical state of the government repositories. Addition-
ally, we aimed to demonstrate patterns in individ-
ual sustainability, such as how accessible, collabora-
tive, and maintainable these systems are for contribu-
tors over time. With these insights, governments can
more easily understand the strengths and weaknesses
of their software project practices. Identifying ar-
eas of improvement will be simplified, together with
promoting a more resilient and contributor-friendly
open-source ecosystem. Moreover, this dataset gives
researchers access to structured and clear data sup-
porting individual sustainability studies in govern-
ment open-source software, enabling deeper analysis
of developer experience, policy impacts, and commu-
nity health across nations.

4 Discussion

4.1 Empirical Analysis

This analysis provides a structured overview of how
different governments approach sustainable software
development and where improvements can be made.
It has been split into technical, environmental, eco-
nomical, social, and individual analysis.

4.1.1 Technical

The technical sustainability analysis revealed signif-
icant differences in how governments maintain and
develop their open-source projects. Countries like

the Netherlands and the USA exhibited more bal-
anced performance across key technical metrics, sug-
gesting relatively mature and consistent development
practices. In contrast, Germany’s repositories dis-
played less balanced scores, possibly reflecting incon-
sistencies in practices or varying levels of maintenance
across its projects. Documentation quality was no-
tably higher for the Netherlands, indicating better
support for understandability and long-term main-
tainability. Testing coverage, however, was gener-
ally low across all countries — with the USA lead-
ing but still falling short — highlighting an area for
substantial improvement. Modularization was a pos-
itive finding across the board, suggesting that most
projects are structured in a way that supports easier
updates and future scalability.

4.1.2 Environmental

From an environmental sustainability perspective,
several indicators were extracted to evaluate po-
tential energy consumption and runtime efficiency.
Around 45% of repositories were identified as poten-
tially runnable, which leaves room for improvement
in terms of reproducibility and ease of deployment.
Furthermore, approximately 55% of the repositories
had no identifiable tech stack, creating uncertainty
around environmental impact due to unclear deploy-
ment environments and possible inefficiencies in re-
source use. Among those that did expose a tech
stack, Docker-based setups were observed, which sug-
gest leaner operational models via containerization.
These setups can reduce energy consumption by op-
timizing resource isolation. Additionally, repositories
developed in Go or C indicated a preference for low-
overhead and performance-efficient technologies — an
environmentally conscious choice when compared to
heavier runtimes.

4.1.3 Economical

To address the economical dimension of sustain-
ability, we implemented both clustering and tex-
tual similarity analysis to identify potentially redun-
dant projects. Clustering grouped repositories by
development activity, popularity, and collaboration
metrics, helping us distinguish between active, suc-
cessful projects and those that may be outdated or
underutilized. This revealed clusters where multi-
ple projects across countries shared similar engage-
ment levels, indicating areas of overlap that could be
streamlined. The similarity matrix analysis further
revealed textual overlaps in repository names and de-
scriptions, which pointed to functional redundancies.
For example, COVID-19 dashboards and notification

8



apps were developed independently by several govern-
ments, while reusable design systems and CKAN ex-
tensions appeared in both Dutch and French reposito-
ries. These overlaps highlight opportunities to reduce
economic costs by encouraging cross-country collab-
oration, reusing templates, or consolidating efforts
where functionality already exists.

4.1.4 Individual

Individual sustainability was assessed by examining
community-centric metrics that reflect how open, ac-
cessible, and collaborative the development process is
for contributors. By analyzing data like the number
of contributors, external contributions, and pull re-
quest activity, we were able to form a picture of the
health and openness of these government projects.
While some repositories showed signs of active con-
tribution, many lacked reuse instructions or contri-
bution guidelines, indicating that the primary goal
was transparency rather than community building.
This creates barriers for onboarding new developers
and sustaining long-term maintenance through an en-
gaged open-source community. The dataset devel-
oped in this project not only highlights these trends
but also provides a foundation for further research
on developer experience and community health across
nations, helping governments strengthen contributor
support and create more resilient projects.

4.2 Limitations & Future work

A key limitation in our technical analysis is that the
majority of repositories lacked clear reuse instruc-
tions, often stating that their code was open-sourced
primarily for transparency rather than reproducibil-
ity, an example [3] [14]. This limits the ability to
generalize the evaluation of how maintainable or ex-
tensible the software actually is in practice. There-
fore the results of the environmental measurements
are not inline with expectations. In addition to this,
some government projects are large scale systems
— such as national databases or applications serv-
ing millions of users — which are difficult to assess
accurately due to their size and complexity. These
projects often include extensive dependencies or dis-
tributed components that span multiple repositories,
making it difficult to perform a one-to-one compari-
son across countries. This is particularly evident in
domains like COVID-19 tracking, where some coun-
tries bundle everything into one repo, while others
split functionality across many. Combined with lim-
ited documentation and the absence of standardized
deployment methods, it becomes challenging to re-

produce runtime environments or generalize findings
across all government software.

In terms of economical sustainability, limitations
arose from differences in how countries name and de-
scribe their repositories. Language barriers, incon-
sistent use of acronyms, and country-specific nam-
ing conventions made it difficult to consistently in-
terpret and compare repository purposes. While
our textual similarity approach identified overlapping
project names and descriptions, it was not feasible
within the scope of this project to dive deeper into
code-level comparisons. Manual inspection of reposi-
tory contents was time-consuming, and a deeper anal-
ysis — such as checking for duplicated codebases —
was out of scope due to time constraints. Future
work could involve advanced code similarity analysis
or even clone detection to uncover deeper redundan-
cies, assuming privacy and licensing conditions allow.

Lastly, in terms of social sustainability, there is a
limitation in SentiStrenght’s ability to detect tech-
nical language or sarcasm, leading to potential inac-
curacies in emotional tone classification. Moreover,
the evaluation relies primarily on commit messages
within the government GitHub repositories which
might not capture the full scope of developer interac-
tions which might be more visible in pull requests, or
external communication channels.

5 Conclusion
In this project, we approached the challenge of eval-
uating government-developed open-source software
through the lens of multiple sustainability dimen-
sions — technical, environmental, economical, social,
and individual. By combining metric-based analysis
with clustering and similarity detection, we explored
how governments can better collaborate, reduce re-
dundancy, and improve long-term software practices.
Our dataset [12] and methodology lay a foundation
for future research, enabling deeper exploration into
sustainable software development in the public sector.
For users that are interested in using our dashboard
can find the application here [15].

9



A Technical Metric Graphs

(a) France (b) Germany

(c) Greece (d) The Netherlands (e) The USA

Figure 6: Hexagon radar charts for individual countries

10



(a) France (b) Germany

(c) Greece (d) The Netherlands (e) The USA

Figure 7: Technical metrics graphs for individual countries

11



B Social Dimension Metrics by Country

Country Avg Senti-
ment

Pos Ratio Neutral Ra-
tio

Contributors Inclusiveness Engagement Diversity Retention (%) Code of Con-
duct

Contrib.
Guide

France 0.010 0.005 0.728 141 41.833 0.224 0.364 58.737 No No
Germany 0.019 0.009 0.824 1199 56.333 0.461 0.708 55.602 Yes Yes
Greece 0.006 0.002 0.731 81 46.167 0.035 0.319 56.563 No No
Netherlands 0.021 0.010 0.857 326 57.167 1.417 0.727 59.409 Yes Yes
USA 0.024 0.012 0.388 134 30.667 0.160 0.264 30.610 No Yes

Table 3: Aggregated sentiment and social health metrics by country

C Individual Dimension Metrics

Collected Metric CSV Metric Name(s) Individual Dimension Relevance
Development history total_commits,

repo_age_months
Indicates openness, transparency, and activeness
of the repository; essential for understanding
project evolution and sustained engagement.

Number and diversity of
contributors

num_contributors,
external_pr_percentage

Reflects whether development is centralized or
open to outside contributors; diversity supports
resilience and long-term sustainability.

Commit activity / most re-
cent commit

commit_frequency_per_month,
days_since_last_commit

Shows if the project is actively maintained and
whether contributors are regularly engaged.

Documentation
(README, contribut-
ing guide, etc.)

has_readme,
has_contributing,
has_license

Helps new contributors onboard easily; accessi-
ble documentation improves developer experience
and community inclusiveness.

Buildability of the software has_cicd Ensures that contributions can be reliably tested
and integrated, reducing friction in the develop-
ment process.

Open issues and pull re-
quests

open_issues, closed_issues,
merged_pr_percentage

Reflects openness to external input, feedback
loops, and community collaboration on the
project.

Table 4: Individual sustainability-related metrics extracted from government repositories

Country Total Commits Commit Frequency Per Month Has Readme Has Contribution Guide Has Code of Conduct

France 198.166667 4.012504 0.433333 0.033333 0.000000
Germany 208.833333 41.042321 1.000000 0.166667 0.166667
Greece 16.733333 1.207077 0.900000 0.000000 0.000000
Netherlands 29.733333 0.868840 0.733333 0.200000 0.000000
USA 814.521739 9.645142 0.739130 0.217391 0.000000

Table 5: Aggregated individual dimension metrics by country.

12



References
[1] European Commission. Open Source Software Strategy. Accessed April 4, 2025. 2020. url: https://

commission.europa.eu/about/departments-and-executive-agencies/digital-services/open-
source-software-strategy_en.

[2] European Commission. Interoperable Europe Act: Implications and Impact on EU’s Digital Future. Ac-
cessed April 4, 2025. 2024. url: https://data.europa.eu/en/news-events/news/interoperable-
europe-act-implications-and-impact-eus-digital-future.

[3] MinBZK. woo-besluit-broncode-digid. url: https://github.com/MinBZK/woo-besluit-broncode-
digid.

[4] Centers for Disease Control and Prevention (CDC). CDCgov GitHub Repositories. url: https://
github.com/CDCgov.

[5] Corona-Warn-App Project. Corona-Warn-App. url: https://github.com/corona-warn-app.

[6] Etalab. Etalab GitHub Repositories. url: https://github.com/etalab.

[7] EELLAK. EELLAK GitHub Repositories. url: https://github.com/eellak.

[8] SUSO Academy. Sustainability Awareness Framework (SusAF). url: https://www.suso.academy/
en/sustainability-awareness-framework-susaf/.

[9] mlco2. url: https://github.com/mlco2/codecarbon?tab=readme-ov-file.

[10] Tu Delft. url: https://github.com/tdurieux/EnergiBridge.

[11] Sustainable Computing Lab. Energy Efficiency of Programming Languages: An Analysis. url: https:
//sites.google.com/view/energy-efficiency-languages.

[12] Group 9. url: https://github.com/IlmaJaganjac/project_2_group_9.

[13] Emitza Guzman, David Azócar, and Yang Li. Sentiment analysis of commit comments in GitHub: An
empirical study. 11th Working Conference on Mining Software Repositories, MSR 2014 - Proceedings.
DOI: 10.1145/2597073.2597118. 2014. url: https://doi.org/10.1145/2597073.2597118.

[14] open overheid. url: https : / / open . overheid . nl / documenten / 530f2237 - 4168 - 44b7 - ac41 -
461ced7a8977/file.

[15] Group 9. url: https://project2group9-t4ammavu3jyeihygjyelua.streamlit.app/.

13

https://commission.europa.eu/about/departments-and-executive-agencies/digital-services/open-source-software-strategy_en
https://commission.europa.eu/about/departments-and-executive-agencies/digital-services/open-source-software-strategy_en
https://commission.europa.eu/about/departments-and-executive-agencies/digital-services/open-source-software-strategy_en
https://data.europa.eu/en/news-events/news/interoperable-europe-act-implications-and-impact-eus-digital-future
https://data.europa.eu/en/news-events/news/interoperable-europe-act-implications-and-impact-eus-digital-future
https://github.com/MinBZK/woo-besluit-broncode-digid
https://github.com/MinBZK/woo-besluit-broncode-digid
https://github.com/CDCgov
https://github.com/CDCgov
https://github.com/corona-warn-app
https://github.com/etalab
https://github.com/eellak
https://www.suso.academy/en/sustainability-awareness-framework-susaf/
https://www.suso.academy/en/sustainability-awareness-framework-susaf/
https://github.com/mlco2/codecarbon?tab=readme-ov-file
https://github.com/tdurieux/EnergiBridge
https://sites.google.com/view/energy-efficiency-languages
https://sites.google.com/view/energy-efficiency-languages
https://github.com/IlmaJaganjac/project_2_group_9
https://doi.org/10.1145/2597073.2597118
https://open.overheid.nl/documenten/530f2237-4168-44b7-ac41-461ced7a8977/file
https://open.overheid.nl/documenten/530f2237-4168-44b7-ac41-461ced7a8977/file
https://project2group9-t4ammavu3jyeihygjyelua.streamlit.app/

	Introduction
	Methodology
	Data Collection
	Sustainability Evaluation Framework
	Technical
	Environmental
	Economical:
	Social
	Individual

	Data Visualization

	Results
	Technical
	Environmental
	Economical
	Social
	Individual

	Discussion
	Empirical Analysis
	Technical
	Environmental
	Economical
	Individual

	Limitations & Future work

	Conclusion
	Technical Metric Graphs
	Social Dimension Metrics by Country
	Individual Dimension Metrics

