
Evaluating the Energy Consumption of Static
Analysis Tools: A Sustainability Perspective"

Rafał Owczarski∗
Delft University of Technology

Delft, Netherlands
R.R.Owczarski@student.tudelft.nl

Lászlo Roovers∗
Delft University of Technology

Delft, Netherlands
L.Roovers@student.tudelft.nl

Athanasios Christopoulos∗
Delft University of Technology

Delft, Netherlands
A.Christopoulos@student.tudelft.nl

Muhammad Zain Fazal∗
Delft University of Technology

Delft, Netherlands
mfazal@tudelft.nl

∗ Equal contribution

Abstract—As software systems grow in scale and complexity,
the tools we use to maintain them play an increasingly important
role in the broader sustainability of software engineering. Among
these tools, static analysis tools—such as PMD—are indispensable
for identifying code issues early, improving maintainability, and
ensuring quality standards. However, the energy footprint of such
tools remains an overlooked aspect of software development.

With rising awareness of climate change and environmental
impact, the energy efficiency of software tooling has gained
relevance. Developers and organizations alike are beginning to
consider not only the functionality and performance of their
development pipelines, but also their sustainability. While run-
time energy efficiency has received considerable attention, the
energy cost of development tools themselves—tools that run
continuously in CI pipelines or are triggered repeatedly during
development—deserves closer scrutiny.

This study aims to bridge that gap by focusing on the energy
consumption of PMD under various configurations. Specifically,
we investigate how different rulesets and code complexities affect
PMD’s energy usage. Through a systematic measurement process
in a controlled environment, we aim to uncover patterns in energy
usage that can inform sustainable tool configurations. Our results
provide actionable insights for developers who want to balance
code quality assurance with energy efficiency.

Index Terms—Sustainable software engineering, energy con-
sumption, static analysis tools, PMD, software quality, energy
efficiency, code analysis, green computing, software sustainability.

I. INTRODUCTION

As software development increasingly prioritizes sustain-
ability, understanding the energy consumption of development
tools has become essential. Static analysis tools, such as PMD,
play a crucial role in improving code quality by identifying
potential issues early in the development process. However,
their computational cost and energy footprint remain largely
unexplored. This research seeks to bridge this gap by sys-
tematically evaluating the energy consumption of PMD across
different configurations.

Our study focuses on measuring how varying rulesets and
code complexities influence energy consumption. By con-
ducting experiments in a controlled environment, we aim to

provide actionable insights into optimizing static analysis for
energy efficiency. The findings will enable developers to make
informed choices when configuring PMD, balancing code
quality assurance with sustainable computing practices.

As energy efficiency becomes a key concern in computing,
it is crucial to understand the broader energy implications
of software development tooling. While much attention has
been given to optimizing software for runtime performance
and energy use, less focus has been placed on the tools used
during development. Static analysis tools are often executed
frequently, sometimes integrated into automated workflows,
where even marginal inefficiencies can accumulate into a
notable energy footprint over time.

Furthermore, the trade-off between analysis depth and en-
ergy consumption is still poorly understood. Developers are
often unaware of the energy cost of stricter or more com-
prehensive rulesets, and may unintentionally configure tools
in ways that significantly increase energy usage. By shedding
light on these dynamics, this study aims to empower more
sustainable decision-making in tool configuration.

In a broader sense, our research contributes to the evolving
field of sustainable software engineering. Quantifying the
energy impact of development tools provides a foundation
for optimizing not only the software being built, but also
the processes and environments in which it is created. As
awareness grows around the environmental cost of digital
infrastructure, such insights become increasingly relevant for
both academia and industry.

II. PROBLEM STATEMENT AND MOTIVATION

As software continues to evolve, energy efficiency has
become an increasingly important consideration. With
the growing emphasis on sustainability in computing,
understanding the energy impact of software development
tools is crucial. Static analysis tools like PMD play a key
role in improving software quality by detecting code issues
early. However, their own computational cost and energy



consumption remain largely unexplored.

The motivation behind this research stems from several key
concerns:

• Sustainability in Software Development: The carbon
footprint of software is often overlooked, yet energy-
intensive tools contribute to overall energy consumption
in data centers and development environments.

• Balancing Code Quality with Efficiency: Static anal-
ysis improves maintainability and security, but different
rulesets and configurations may lead to significantly dif-
ferent energy costs. Understanding these trade-offs allows
developers to optimize rule selection without unnecessary
energy overhead.

• Scalability and Performance Considerations: As code-
bases grow, static analysis tools may introduce perfor-
mance bottlenecks. Measuring energy consumption helps
assess whether an analysis process remains efficient as
software projects scale.

• Optimizing Developer Toolchains: Developers use static
analysis as part of CI/CD pipelines, where energy con-
sumption can accumulate overtime. Insights from every
measurements can contribute to designing more energy-
efficient development workflows.

III. RESEARCH QUESTIONS

To address these concerns, our research is guided by the
following key questions:

RQ1 Ruleset Complexity vs. Energy Consumption
How does the number and complexity of rules in a PMD
ruleset impact the energy consumption of static code
analysis?

RQ2 Error Detection vs. Energy Efficiency
Is there a correlation between the number of detected er-
rors and the energy consumption of the analysis process?

RQ3 Popular Rulesets and Their Energy Cost
How do commonly used PMD rulesets compare in terms
of energy efficiency, and which provide the best balance
between detection capability and power consumption?

By systematically analyzing these aspects, this research aims
to provide actionable insights that help software engineers
make informed choices about static analysis configurations,
balancing software quality with sustainable computing prac-
tices.

IV. BACKGROUND AND RELATED WORK

With climate change and overall environmental concerns
being on the rise in the last few years, the aspect of
sustainability among all engineering sectors occupies
an increasingly larger part of recent research. Software
engineering is no exception to this and a large amount of
research has already been conducted to reduce the energy
consumption of various aspects of software engineering,
therefore increasing its sustainability. However, the number of
developer tools and frameworks being so large, it is extremely
complicated to cover them all, meaning that in the context of

sustainability, most of them remain unexplored.

The purpose of this research is to deepen our knowledge
regarding the energy consumption of different rulesets of
a static code analysis tool, ran on open source projects
of varying lengths. This research is intended to present a
well-rounded understanding of the differences in energy
consumption of static analysis rulesets, allowing developers
to make more informed and sustainable choices during
development.

Unfortunately, approaches such as Marantos et al. (2021)[1]
and Lopez-Garcia et al. (2015)[2] keep their main focus
on focus using static analysis tools to measure the energy
consumption of running code rather than the energy usage of
the action tool.

Despite the widespread adoption of static analysis
tools, there is a lack of research quantifying their energy
consumption. Some existing studies focus on the performance
overhead of static analysis tools, measuring their execution
time and CPU usage. For instance, a study by V Lenarduzzi
et al[3] compared the performance impact of different
static analyzers but did not explicitly assess their power
consumption.

A notable exception is the work of Sahin et al. [4], who
explored the energy consumption of automated software
testing frameworks and found that test coverage tools
can significantly increase energy usage, especially in large
codebases. While their study does not focus on static analysis,
it suggests that software quality assurance tools can have
substantial energy implications.

Thus, research focused on the impact on energy consump-
tion of rules and the size of the code analysed remains lacking.
As we attempted to bridge this gap, different static analysis
tools were at our disposal, such as Checkstyle, jQAssitant,
PMD and FindBugs but it was decided to focus on PMD, due
to its flexibility and configurable rules, as well as its ease of
integration with popular IDEs such as IntelliJ and VS Code.

V. METHODOLOGY

To evaluate the energy consumption of the PMD static
analysis tool under different rulesets and varying code and
rule complexities, we designed an experiment aimed at
capturing power usage during execution. The key objective
was to measure how different configurations impact energy
efficiency under controlled conditions.

All measurements were conducted in a consistent computing
environment to minimize variability. The hardware setup used
for the experiment was as follows:

• Processor: Intel Core i7-9750H CPU @ 2.60GHz
• Memory: 16GB RAM
• Operating System: Windows 10 Home

2



• Power Monitoring Tool: EnergiBridge
• Static Analysis Tool: PMD
This setup ensured that all runs were executed under iden-

tical conditions, reducing potential noise in the results.

A. Evaluation Metrics

To quantify the energy consumption of PMD across differ-
ent configurations, we compared multiple evaluation metrics
commonly used in energy-aware computing research:

• Total Energy Consumption (joules): The total enery con-
sumed during the execution of PMD.

• Execution time (seconds): The duration required to com-
plete the static analysis task, providing helpful insights
into performance efficiency.

• Energy Delay Product (EDP): A combined metric con-
sidering both energy consumption and execution time,
calculated as

EDP = Energy × Time,

emphasizing energy efficiency relative to runtime.

B. Open Source Projects

To provide a diverse and representative analysis, we se-
lected a mix of well-known and lesser-known open-source
Java projects. The selection criteria included project size,
complexity, real-world relevance, and code structure diversity.
The following projects were chosen:

• Well-known projects
– Spring Framework: A widely used Java framework

for enterprise applications offering a large and complex
codebase.

– JUnit 5: A popular unit testing framework, useful for
analyzing the energy consmption for test-related code.

• Lesser-known projects
– JabRef: A reference manager for academic papers,

featuring a mix of GUI and backend logic.
– Terasology: A voxel-based game engine with

performance-critical code, providing insights into
energy usage in computationally intensive applications.

VI. EXPERIMENT SETUP

• Each scenario (a unique combination of a source code
directory and ruleset) was executed 30 times.

• The execution order was randomized to eliminate bias.
• Energy measurements were collected using EnergiBridge

and stored for analysis.
• A cooldown period was introduced between runs to reset

system state.
Each scenario’s execution consisted of the following steps:

1) Initialization: The energy measurement tool was started
to record baseline consumption.

2) Idle Energy Measurement: The measurement of idle
energy lasting 5 seconds.

3) PMD Execution: The tool analyzed the source code
using a predefined ruleset.

4) Energy Logging: The total energy consumption was
recorded.

5) Cooldown Period: A short pause was introduced before
the next run to mitigate thermal fluctuations.

6) Data Storage: Results were appended to a dataset stored
in Parquet format for further analysis.

A. Approach Considerations

To ensure reliable and repeatable results, the following
precautions were taken:

• Repeated trials: Each test was conducted 30 times to
account for fluctuations.

• Controlled environment: The experiments were exe-
cuted on a dedicated machine without background pro-
cesses interfering.

• Temperature monitoring: CPU temperature was tracked
to ensure thermal effects did not distort energy readings.

• Randomized execution: The order of runs was shuffled
to prevent systematic bias.

• Idle energy offset: Measuring the idle energy in the
beginning of the trial is offset to minimize the influence
of energy fluctiations between runs aiming to measure
only the energy directly linked to the execution of PMD

B. Configuration and Implementation Details

To run the experiments and generate the visualisations, a
replication package was created [5]. To configure and run the
experiment, the pipeline.py script was used. This script
defines scenarios using Java projects and rulesets to consider,
along with logic to randomize the execution order.

The visuals used in subsection VII-A were generated us-
ing total_energy_analyzer.py. Energy Delay Prod-
uct (EDP) and energy-over-time analysis in subsection VII-B
and subsection VII-C were performed using the edp.py
script. Finally, the error influence on the energy distribution
in subsection VII-D was visualized using a Python script
errorVisuals.py. Unfortunately we were unable to en-
sure that the data used in edp.py include data without the idle
data. Therefore all graphs generated in the above mentioned
sections use data that were not offset the same way as in
subsection VII-A

VII. RESULTS

To split the PMD rules in different rulesets, it was decided
to use the rule subcategories of PMD:

• Best practices
• Codestyle
• Design
• Documentation
• Error prone
• Multithreading
• Performance
• Security

The energy consumption of the computer was measured when
running PMD with each aforementioned category as a ruleset.
This was done on each of the 4 open source projects. After

3



running each scenario 30 times the following results were
observed.

A. Total Energy Consumption

To obtain the total energy consumption across the entire
PMD run, the energy output of energibridge over time
was summed. As a result, total PP0, PP1, and Package
energy could be compared. The analysis focuses on PP0 and
Package results, as PP1 was not expected to be influential,
given that PMD should not rely on the GPU for calcula-
tions which was confirmed as the median total PP1 energy
consumption across runs was around 1J . After the totals
per run were calculated, some outliers were observed. These
outliers consisted of abnormally long PMD runs or instances
where energibridge stopped instantly. The causes of these
outliers were analyzed manually. To minimize their influence,
the 3 maximum and 3 minimum total energy values were
excluded when generating the plots in this section. However,
plots including all obtained data can be accessed through the
replication package.

Figure 1 and Figure 2 illustrate the average energy consump-
tion on running PMD analysis on the open source projects
excluding idle energy consumption and above mentioned out-
liers. The results are focued on energy variations across the
projects and rulesets connected to PP0 and Package energy.

Fig. 1: Average Energy Consumption per Project excluding
idle energy consumption

Fig. 2: Average Energy Consumption per Ruleset excluding
idle energy consumption

Figure 1 showcase differences between distributions of the
total energy consumption between Java projects. In all projects
the Package violin plot has the same shape as PP0 with
a shift of around 500J. However, the overall shapes of the
violin plots differ across projects. Terasology-develop
and jabref-main display more dense accumulation
near the median and upper interquartile range, while
junit5-r5.12.1 and spring-framework-main dis-
play higher standard deviation and higher mean.

Figure 2 reveals some differences between the distributions
of the total energy consumption between rulsets. For the
Package energy consumption the violin plots have similar
shape with elongated tail toward higher values and values
concentrated in the lower range. All rulesets exhibit similar
median values and interquartile ranges. The shapes of the
PP0 violin plots are similar to the Package counterparts
but the tails are shorter and we can distinguish two widths
around the median, errorprone and multithreading
are clearly elongated with less values near the median and
more higher vaules in the tail, while the rest rulesets have clear
condensation of values near the median and interquartile range.
One difference can be obseved in case of documentation
ruleset for which there are two visible condensations of values.

B. Energy Delay Product
The Energy Delay Product (EDP) metric provides infor-

mation on the trade-off between energy consumption and
execution time. As shown in Figure 4, the EDP distribution
varies significantly across the four projects.

Among the projects, junit-5.9.2.1 exhibits the highest vari-
ability in EDP, with some instances reaching notably higher
values. This suggests that the execution time or energy con-
sumption for this project can be highly inconsistent, potentially
due to differences in project complexity or workload distribu-
tion. Moreover, spring-framework-main consistently shows the
lowest EDP values, indicating a more efficient execution with
lower energy consumption and shorter runtime. The distri-
butions for Terasology-develop and jabref-main are relatively
similar, though Terasology-develop appears to have a slightly
wider spread, suggesting greater fluctuations in energy and
time requirements.

4



These results highlight the impact of project characteristics
on the efficiency of static analysis tools. Larger or more
complex codebases may introduce greater variability in EDP,
affecting overall energy efficiency.

Fig. 3: EDP Heatmap by Project and Ruleset

Fig. 4: EDP Distribution by Project

Fig. 5: EDP Distribution by Ruleset

C. Average Energy over Time

Fig. 6: Average Energy over Time by Project

Fig. 7: Average Energy over Time by Ruleset

The energy consumption of PMD across different projects
exhibits noticeable variations in both intensity and distribution
over time. As shown in Figure 6, all four projects follow a very
similar initial pattern, where energy usage steadily increases
during the first ten seconds. This phase likely corresponds to
PMD’s parsing and rule execution processes, which demand

5



significant computational resources. The Terasology-develop
and JabRef-main projects show the steepest increase, peaking
near 200kJ, whereas JUnit 5.12.1 and Spring Framework-main
exhibit more moderate increases, remaining below 150kJ at
this stage.

Following this initial phase, a distinct drop in energy con-
sumption occurs around the ten-second mark for most projects,
suggesting a transition between different processing stages.
While Terasology and JabRef maintain relatively stable energy
usage, JUnit and Spring Framework display more occasional
spikes, likely indicating intermittent bursts of computational
effort due to complex code structures or rule evaluations.

In the final phase of execution, energy usage patterns
change even further. JUnit and Spring Framework experience
additional short-lived surges in energy consumption before
completion, possibly due to the fact that these are larger
projects. In contrast, Terasology and JabRef show a more
gradual decline, suggesting a continuous workload until com-
pletion. This in turn shows us that the execution time of
PMD also varies depending on the project, with almost double
execution time for jUnit and Spring, contributing to their large
energy consumption, without jUnit and Spring being larger
than the other projects.

The observed differences in energy consumption can likely
be attributed to variations in codebase size, structure, and
complexity. Projects such as Terasology and JabRef, tend to
show a higher and more sustained initial energy usage, with
a run stopping at around 15 seconds, whereas projects with
more modular or less complex structures, like JUnit and Spring
Framework, show intermittent patterns of computation, with
smaller spike but a longer overall runtime. Additionally, the
presence of idle periods and sharp drops suggests that PMD’s
execution process is most likely not completely uniform and
may depend on how individual rules interact with different
code structures.

These findings highlight the non-linear nature of PMD’s
energy consumption and emphasize the impact of project-
specific characteristics on static analysis performance.

The energy consumption trends for different PMD rulesets,
which can be seen in Figure 7, closely resemble those observed
across different projects. All rulesets exhibit a sharp increase
in energy usage within the first ten seconds, peaking at over
200kJ. This suggests that most rulesets are applied early
in the analysis process, consuming significant computational
resources. Among them, best practices, code style, and perfor-
mance show the highest energy demands, while security and
documentation remain lower, most likely due to their smaller
size.

After this initial peak, energy usage declines sharply, fol-
lowed by intermittent spikes beyond the first 15 seconds.
Some rulesets, such as multithreading and error prone, display
extended energy consumption, likely due to their complexity.
In the final phase, energy patterns become irregular, suggesting
that certain checks or reporting processes continue even after
the bulk of analysis is completed.

Overall, the results indicate that rule selection significantly

impacts energy consumption. More complex and larger rule-
sets require greater processing power, and thus increase the
average energy consumption, while simpler rulesets show
lower activity. This shows that ruleset selection could be
optimized in order to best fit the requirements of the project,
while reducing energy consumption

D. Error Frequency and relation to Energy Consumption

Fig. 8: Project Errors per Ruleset

Fig. 9: Total Errors per Project

As shown previously, the energy consumption across differ-
ent projects reveals that certain projects exhibit higher energy
usage, which actually seems to correlate with the number
of errors detected. In fact, Spring-framework-main shows the
highest energy consumption, aligning with its significantly
higher error count (294,220 errors) as seen on Figure 9. Sim-
ilarly, junit5-r5.12.1, which ranks second in error occurrences
(113,258 errors), also demonstrates increased energy usage.
In contrast, Terasology-develop and jabref-main, which have
fewer violations, consume comparatively lower energy.

This correlation suggests that projects with a larger num-
ber of static analysis violations require more computational
processing, directly impacting energy consumption. The pro-
cessing overhead of evaluating and reporting each violation,
particularly when rulesets are applied extensively, leads to
increased CPU activity, resulting in greater power usage.

6



Among the different PMD rulesets, codestyle and documen-
tation errors are the most frequently occurring, contributing
significantly to energy consumption. These rulesets include
checks for variable finalization, unused imports, and required
comments, which are relatively simple but occur in large
volumes. The continuous parsing of large codebases to enforce
these rules results in higher energy expenditure, as seen in
projects like spring-framework-main and junit5-r5.12.1. In
fact, while the number of errors seems to correlate to energy
consumption, since jUnit and Spring have similar energy
consumptions but very different amounts of errors, it seems
like the size of the project matters is the determining factor.

Moreover, less frequent but computationally intensive rules,
such as those under multithreading and security, have a dif-
ferent impact on energy usage. While these rules generate
fewer violations, their complexity requires deeper analysis,
potentially increasing per-instance processing time. However,
because they occur less frequently, their overall contribution
to total energy consumption remains lower than that of highly
repetitive codestyle checks.

VIII. LIMITATIONS

While this study provides valuable insights into the re-
lationship between software projects, rulesets, and energy
consumption, several limitations should be acknowledged.

First, the energy measurements were conducted in a spe-
cific hardware and software environment, which may influ-
ence the observed results. Factors such as CPU architecture,
background processes, and power management settings could
introduce variability in energy consumption. Future studies
could extend this work by running experiments on a broader
range of hardware configurations to ensure generalizability.

Another limitation relates to the estimation of idle energy. In
this study, idle energy was subtracted using a fixed baseline
period; however, idle power consumption can fluctuate due
to system activities beyond our control. A more adaptive
approach that dynamically accounts for variations in idle
energy could improve measurement accuracy.

Furthermore, the study primarily examines package-level
energy consumption, focusing on the energy domains PP0,
PP1 and Package. This approach does not isolate the energy
impact of specific system components such as memory, I/O
operations, or network activity. Future research could employ
more fine-grained energy profiling techniques to capture a de-
tailed breakdown of energy usage across different subsystems.

The complexity and computational demands of different
software projects also present a challenge. While the study
analyzes energy consumption based on project and ruleset,
additional factors such as code structure, execution time,
and workload intensity were not explicitly accounted for.
Further investigation into how these factors influence energy
consumption could refine our understanding of energy-efficient
software development.

Additionally, the scope of rulesets considered in this study is
limited to predefined categories such as best practices, security,
and code style. Other aspects of software quality, including

performance optimizations, architectural design patterns, and
compiler optimizations, could also play a significant role in
energy efficiency. Expanding the analysis to include a broader
range of rulesets may yield deeper insights into how software
development practices affect energy consumption.

Another critical limitation is the reliance on EnergiBridge,
the energy and power monitoring tool used in this study. While
EnergiBridge provides useful estimations, no single measure-
ment tool is completely free from inaccuracies. Factors such
as sensor precision, sampling rate, and power estimation algo-
rithms can impact the reported results. To increase reliability,
future studies should incorporate multiple energy measurement
tools and compare their outputs to obtain a more comprehen-
sive and accurate assessment of energy consumption.

Finally, the generalizability of our findings to real-world
applications remains an open question. The experiments were
conducted in a controlled environment with specific configu-
rations, whereas real-world applications often exhibit varying
energy consumption patterns due to user interactions, dynamic
workloads, and external dependencies. Future research could
explore energy profiling in production environments to bridge
the gap between controlled experiments and real-world sce-
narios.

Despite these limitations, this study contributes to the
growing body of research on software energy efficiency. It
highlights key areas where energy consumption can be opti-
mized through static analysis and best practices, providing a
foundation for further exploration in this field.

IX. DISCUSSION

The results suggest that PMD’s Security ruleset is signif-
icantly more energy-intensive than other rulesets. This could
be due to the complexity of security-related static analysis,
which may involve additional computational checks, such as
vulnerability detection and deep code inspections, leading to
increased processing time and energy use.

Similarly, the Terasology (develop branch) project showed
the highest energy consumption among the evaluated projects.
Given that Terasology is a large-scale game engine, it likely
contains a complex codebase with numerous interdependen-
cies, resulting in higher computational overhead during static
analysis. This aligns with the expectation that larger and
more intricate codebases demand more processing power and,
consequently, more energy.

Interestingly, when idle energy was included, differences
between rulesets and projects were negligible. This highlights
the importance of accurately isolating the energy cost of
static analysis from background system consumption. Without
subtracting idle energy, the relative impact of different PMD
rulesets and projects on energy consumption would have been
masked.

These findings indicate that optimizing static analysis tools,
particularly for security checks, could lead to significant
energy savings. Future research could explore alternative con-
figurations, optimizations, or parallel processing techniques to

7



reduce the energy footprint of static analysis while maintaining
thorough code inspections.

A. Broader Implications

The results of this study reinforce the broader role of
energy-efficient tooling in sustainable software engineering.
As software development workflows increasingly rely on
automated analysis tools, often integrated into CI/CD
pipelines, their cumulative energy cost becomes non-trivial.
Frequent and unnecessary runs of static analysis tools in
development environments can lead to unnecessary energy
expenditure, making it important to explore smarter execution
strategies.

One practical takeaway is that developers and DevOps
engineers should carefully configure static analysis rulesets
based on project needs. While comprehensive security checks
are essential, running them excessively or indiscriminately
on every minor code change can be wasteful. A potential
solution is to prioritize selective analysis, where security
checks are triggered less frequently, for instance, only before
major releases or when security-sensitive files are modified.

Another key insight relates to tool design and optimization.
If static analysis tools were built with energy efficiency as
a first-class concern, developers could leverage optimized
execution paths, caching mechanisms, and parallel process-
ing to reduce their impact. Tools like PMD could integrate
energy-aware modes that adapt their execution strategy based
on available computational resources, reducing energy waste
while still delivering useful insights.

B. The Main Trade-off

A notable consideration emerging from this study is
the potential trade-off between rigorous static analysis
and energy efficiency. Security rulesets tend to be the
most computationally expensive, yet they provide critical
vulnerability insights. As such, reducing their execution
frequency to save energy must be carefully weighed against
the risk of overlooking security flaws.

This trade-off suggests that software teams should evaluate
energy consumption in the context of project priorities. For
security-critical applications, such as financial systems or
healthcare software, thorough static analysis might justify
higher energy costs. In contrast, for non-critical projects, a
more lightweight analysis approach could be appropriate.

Moreover, ruleset complexity should be assessed in relation
to diminishing returns. If certain security rules contribute dis-
proportionately to energy use while detecting only a marginal
number of additional issues, software engineers might con-
sider refining or simplifying them. Developing energy-aware
heuristics that balance analysis depth with computational cost
could provide a viable path forward.

C. Future Work

Several future research directions arise from this study:
• Optimizing Static Analysis Execution: Future research

could explore techniques such as incremental analysis,
where only modified portions of the codebase are ana-
lyzed instead of the entire project. This could significantly
reduce energy consumption without compromising soft-
ware quality.

• Comparative Studies with Other Static Analysis Tools:
While this study focuses on PMD, analyzing a broader set
of tools—including Checkstyle, FindBugs, SonarQube,
and ESLint—could provide a more comprehensive un-
derstanding of how different analysis techniques influence
energy consumption.

• The Role of Hardware in Energy Efficiency: Hardware
plays a crucial role in determining energy efficiency. In-
vestigating how different CPU architectures, cloud-based
environments, or energy-efficient hardware configurations
impact static analysis could yield valuable insights.

• Integration of Energy Profiling into Developer Work-
flows: There is currently limited visibility for developers
regarding the energy cost of their tools. Monitors and
sensors are quite hard to find, let alone comine with exist-
ing tools. Future research could explore real-time energy
feedback mechanisms that inform developers about the
energy impact of their analysis settings, helping them
make more sustainable choices.

• Energy-Aware CI/CD Pipelines: Modern software de-
velopment relies on frequent automated testing and anal-
ysis. Exploring adaptive scheduling techniques—where
static analysis runs are dynamically adjusted based on
energy consumption thresholds—could help balance soft-
ware quality with environmental impact.

X. CONCLUSION

In this paper, we investigated the energy consumption
of the static analysis tool PMD, focusing on how different
rulesets and code characteristics influence power usage.
Through controlled experiments, we measured PMD’s energy
footprint using various evaluation metrics, including total
energy consumption, CPU energy usage, execution time,
energy delay product, and power consumption. Our results
highlight the trade-offs between ruleset complexity and
energy efficiency, providing insights into optimizing static
analysis for sustainable software development.

The findings indicate that while static analysis tools are
essential for maintaining software quality, their configuration
can significantly impact energy consumption. Developers can
leverage this knowledge to balance code quality assurance
with sustainability by selecting energy-efficient rulesets and
minimizing unnecessary computations.

To directly address the research questions posed in this
study, our findings reveal that the number and complexity of

8



rules in a PMD ruleset significantly impact energy consump-
tion, with complex rulesets like Security, Errorprone and Mul-
tithreading showing higher energy demands due to increased
processing requirements. There is a partial correlation between
the number of detected errors and energy consumption, though
project size appears to be a more dominant factor, as seen in
the high energy usage of Spring Framework despite varying er-
ror counts. Commonly used rulesets vary in energy efficiency,
with simpler rulesets like Documentation and BestPractices
offering lower energy costs, while Errorprone ruleset provides
critical detection capabilities at a higher energy expense.

Future work could extend this research by analyzing ad-
ditional static analysis tools, exploring energy optimizations
within PMD, and evaluating the impact of different hardware
architectures. By incorporating energy efficiency into tool
selection and configuration, developers can contribute to more
sustainable software engineering practices.

REFERENCES

[1] C. Marantos, K. Salapas, L. Papadopoulos, P. K.
Linos, and G. Goumas, “A flexible tool for estimating
applications performance and energy consumption through
static analysis,” SN Computer Science, vol. 2, no. 1,
p. 21, 2021. [Online]. Available: https://doi.org/10.1007/
s42979-020-00405-7

[2] P. López-García and D. Moreira, “Open questions on the
origin of eukaryotes,” Trends in Ecology & Evolution,
vol. 30, no. 11, pp. 697–708, 2015. [Online]. Available:
https://doi.org/10.1016/j.tree.2015.09.005

[3] V. Lenarduzzi, F. Pecorelli, N. Saarimaki, S. Lujan,
and F. Palomba, “A critical comparison on six static
analysis tools: Detection, agreement, and precision,”
Journal of Systems and Software, vol. 198, p. 111575,
2023. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0164121222002515

[4] D. Li, C. Sahin, J. Clause, and W. G. Halfond, “Energy-
directed test suite optimization,” in 2013 2nd International
Workshop on Green and Sustainable Software (GREENS),
2013, pp. 62–69.

[5] R. Owczarski, L. Roovers, A. Christopoulos, and
M. Z. Fazal, “Sse_2: Static software energy analysis,”
2025, accessed: 2025-04-04. [Online]. Available: https:
//github.com/MuhammadZainFazal/SSE_2

9

https://doi.org/10.1007/s42979-020-00405-7
https://doi.org/10.1007/s42979-020-00405-7
https://doi.org/10.1016/j.tree.2015.09.005
https://www.sciencedirect.com/science/article/pii/S0164121222002515
https://www.sciencedirect.com/science/article/pii/S0164121222002515
https://github.com/MuhammadZainFazal/SSE_2
https://github.com/MuhammadZainFazal/SSE_2

	Introduction
	Problem Statement and Motivation
	Research Questions
	Background and Related Work
	Methodology
	Evaluation Metrics
	Open Source Projects

	Experiment Setup
	Approach Considerations
	Configuration and Implementation Details

	Results
	Total Energy Consumption
	Energy Delay Product
	Average Energy over Time
	Error Frequency and relation to Energy Consumption

	Limitations
	Discussion
	Broader Implications
	The Main Trade-off
	Future Work

	Conclusion

