
Green Shift Left - Evaluating energy efficiency on
the web with static analysis

Jort van Driel
TU Delft

jortdriel@tudelft.nl

Dorian Erhan
TU Delft

derhan@tudelft.nl

Weicheng Hu
TU Delft

weichenghu@tudelft.nl

Giannos Rekkas
TU Delft

grekkas@tudelft.nl

Abstract—Despite a growing awareness of sustainable software
practices, the web remains largely unoptimised and understudied
from an environmental perspective. The modern web is now
responsible for approximately 3.7% of global greenhouse gas
emissions. Given the ubiquity of JavaScript across the web
ecosystem, even small inefficiencies can add up to significant
environmental costs. Existing development tools lack mechanisms
to provide real-time feedback on the energy impact of code. To
address this gap, this research presents an empirical analysis
of JavaScript coding patterns and proposes a low-overhead,
open-source static analysis solution that integrates with CI/CD
pipelines. We tested improvents for a number of anti-patterns and
built an ESLint-based static analysis tool to flag this inefficient
code in real time. In our experiments, we found that most of the
proposed improvements did not result in significant decrease of
the energy consumption. However, caching expensive identifiers
such as querySelectorAll leads to dramatically lower energy
consumption. On the other hand, surprisingly, using webp instead
of gifs and css animations instead of canvas actually lead to
higher or similar energy consumption. By leveraging established
energy-aware design patterns and providing actionable insights,
this work aims to empower developers to write more efficient,
sustainable code and push for the integration of energy-aware
tools into existing continuous integration pipelines.

Index Terms—JavaScript energy efficiency, Web optimization,
Static analysis, ESLint, Sustainable software development, Cod-
ing patterns, Web performance

I. INTRODUCTION

Every year, hardware advances bring faster processors and
larger memory capacities, but no matter how much the hard-
ware improves, developers always tend to add features to push
their software to the limits of what is possible on the given
hardware. This has led to increasingly bloated software, where
efficiency and optimization often take a back seat to rapid
development and feature richness [1]. This shift has resulted in
an industry-wide lack of concern for efficiency and simplicity,
with an ever-increasing demand for performance optimization
despite the use of faster CPUs and larger memory systems.
In stark contrast, the Apollo guidance computer successfully
sent men to the moon with just 4KB of RAM, while today
a single browser tab can consume gigabytes of memory with
little scrutiny.

Although the Web is a fundamental part of modern software
development, research on its energy efficiency patterns remains
scarce [2]. Web applications increasingly rely on excessive
JavaScript frameworks, heavy multimedia content, and ineffi-
cient rendering techniques, all of which require significant pro-

cessing power. As a result, the Internet’s energy consumption
has skyrocketed and now accounts for approximately 3.7%
of global greenhouse gas emissions, equivalent to all of the
world’s air traffic [3]. Given the scale of its environmental
impact, optimizing the Web’s energy efficiency should be a
top priority.

At the heart of this challenge is JavaScript, which has
become the cornerstone of modern software development.
From front-end interfaces to back-end services to mobile apps,
the language is ubiquitous across the web development stack.
According to Stack Overflow’s 2024 Developer Survey [4],
JavaScript is the most widely used programming language
for the tenth year in a row. Its ubiquity means that even
small inefficiencies in JS code can add up to significant
energy costs across millions of devices and users. JavaScript
is a multi-paradigm language that supports object-oriented,
imperative, and declarative programming styles. Besides the
fact that it is an interpreted language, another contributor to
performance issues in JavaScript is its rich and often function-
ally redundant APIs. Multiple coding constructs can provide
the same functionality, but differ significantly in performance
[5]. Developers often use sub-optimal idioms, inadvertently
introducing energy inefficiencies.

Inefficient software directly contributes to higher energy
consumption. While software does not independently emit
CO2, it does drive hardware resource usage [6]. An anal-
ysis of the COP28 climate conference website found that
bloated web code, such as unused scripts, oversized images,
and heavy third-party libraries, caused excessive data transfer
and processing [7]. Despite growing awareness of software
sustainability, developers still lack feedback on the energy
impact of their code. Existing tools, such as linters and static
analyzers, focus on style, correctness, and maintainability, with
little to no attention paid to energy efficiency. As a result,
energy-related anti-patterns go undetected, and developers may
be unaware that certain idioms or practices could have a
measurable environmental impact.

This creates a gap in the focus on energy awareness in these
everyday developer tools, such as linters. Many developers
may use static code analysis to determine which parts of
their code can be optimized for time complexity and con-
currency. Although time complexity can indeed serve as a
predictor of energy consumption in some cases [8]. However,
there is no existing literature to suggest that this correlation

is universal. Research suggests that energy consumption is
influenced by factors beyond algorithmic complexity, such
as hardware architecture, compiler optimizations, and system-
level interactions [9], [10]. For example, the energy efficiency
of an algorithm can vary depending on how it uses the
memory hierarchy and manages data movement [11], so we
cannot conclude that time complexity is proportional to energy
consumption.

Building upon the existing work, our research aims to
address these gaps by developing a low-overhead, open-source
static analysis solution that integrates into existing CI/CD
pipelines. This tool will provide developers with immediate,
actionable insights into energy-inefficient code segments, facil-
itating energy-aware development practices in the web ecosys-
tem. To bridge this gap, we propose to use ESLint, a widely
used static code analysis tool for JavaScript, to identify energy
hotspots within codebases. By developing custom ESLint rules
that focus on patterns known to impact energy consumption,
we hope to provide developers with actionable insights to
help them make trade-offs between energy efficiency and other
factors.

Key Takeaways. The results of the experiments show
that the vast majority of the selected code patterns have
no significant change in energy consumption. Only one
anti-pattern shows a clear and statistically significant in-
crease in energy consumption: the repeated use of expen-
sive identifiers that access expensive DOM elements such
as querySelectorAll. Caching these references results
in significantly lower energy consumption. Interestingly, two
anti-patterns, ’Avoid using canvas’ and ’Avoid using GIF’,
show lower energy consumption than their supposedly opti-
mized counterparts. This highlights the importance of empir-
ical validation in promoting energy-efficient coding practices.

All code used in this study, including the linter plugin,
experiments, testing framework, and results, is open source
and available to the public via a GitHub repository†.

II. BACKGROUND AND RELATED WORK

Energy patterns are reusable solutions designed to reduce
the energy footprint of software applications. Initially devel-
oped for mobile applications, recent studies have investigated
their applicability to web development. Rani et al. conducted
an exploratory study to assess the transferability of mobile
energy patterns to the web domain. They identified 20 patterns
that could be adapted and validated through interviews with
six expert web developers. The study revealed that developers
were particularly concerned about functional anti-patterns and
emphasized the need for guidelines to detect such patterns
in source code. Empirical evaluations of patterns such as
Dynamic Retry Delay (DRD) and Open Only When Necessary
(OOWN) showed that while OOWN led to energy savings,
DRD did not show a significant reduction in energy consump-
tion [2].

†https://github.com/JortvD/cs4575-g5-p2

Static analysis involves examining code without executing
it to identify potential issues, including bugs, security vul-
nerabilities, and performance bottlenecks. Linters are tools
that perform static analysis to enforce coding standards and
detect errors. In the JavaScript ecosystem, tools like ESLint
and JSHint are widely used to maintain code quality and con-
sistency. ESLint is highly configurable, allowing developers to
define and load custom rules [12]. JSHint, a fork of JSLint,
offers a flexible approach to static code analysis, enabling
integration into various development workflows [13].

Recent research has explored extending static analysis tech-
niques to estimate and monitor the energy consumption of soft-
ware. For instance, Brosch investigated how the use of static
code analysis influences the energy consumption of software,
highlighting the potential for integrating energy consumption
metrics into development workflows [14]. Bangash et al. pro-
posed a static-analysis approach that estimates the energy con-
sumption of API usage in smartphone applications, eliminating
the need for test case execution. Their findings indicate a
positive correlation between their static analysis estimates and
hardware-based energy measurements [15]. Similarly, Li et
al. proposed a static-analysis approach to estimate the energy
consumption of API usage in smartphone apps, eliminating the
need for test case execution [16]. These studies suggest that
incorporating energy consumption considerations into static
analysis tools can provide developers with actionable insights
to optimize their code for energy efficiency.

Further research on the subject has produced a variety of
similar tools. EnergyAnalyzer is a static analysis tool devel-
oped by Wegener et al. that estimates the energy consumption
of embedded software by utilizing worst-case execution time
(WCET) analysis techniques. It has been validated across
various benchmarks, demonstrating less than 1% difference
compared to empirical energy models validated on real hard-
ware [17]. Sousa et al. presented a technique to statically
estimate the worst-case energy consumption for SPLs. By
combining static analysis with worst-case prediction, the ap-
proach analyzes products in a feature-sensitive manner, achiev-
ing a mean error percentage of 17.3% in energy consumption
estimation [18]. Grech et al. developed methods for statically
analyzing LLVM Intermediate Representation (IR) programs
to estimate energy usage, bridging the gap between high-level
code structures and low-level energy models [19]. Huizhan et
al. explored using static WCET analysis to guide dynamic
voltage scaling (DVS) for energy optimization in real-time
applications, demonstrating the potential of compiler-directed
strategies in reducing energy consumption [20].

Beyond academic research, various initiatives have emerged
to promote practices for sustainable development. The Col-
lectif Conception Numérique Responsable (CNumR) is a
French collective dedicated to responsible digital design.
CNumR provides tools, certifications, and training to promote
eco-friendly web development practices. Their work includes
the development of best practices and guidelines to reduce
the environmental impact of digital services [21]. Similarly,
the Green Code Initiative advocates for integrating energy

2

efficiency considerations into software development processes,
emphasizing the importance of sustainable coding practices.

Despite these advancements, challenges remain in integrat-
ing energy-efficient practices into mainstream web develop-
ment. There is a notable lack of standardized guidelines and
tools that seamlessly integrate into developers’ workflows
and provide real-time feedback on the energy implications of
their coding choices. In addition, the effectiveness of existing
energy patterns and tools varies, underscoring the need for
continuous evaluation and refinement.

III. METHODOLOGY

In this section, we justify why we chose ESLint as a linter
for building our own rules, and how we set up our experiment
and result processing.

A. Language and Linter Selection

An academic study measuring 27 languages found that
performance and energy efficiency are not always aligned —
a ”faster” language is not necessarily the most energy efficient
[22]. So, the choice of programming languages is not limited.
JavaScript was chosen as the focus for this experiment. One
of the motivations is that JavaScript is the most widely used
of all programming languages [4].

Therefore, as the most popular linter for JavaScript, ESLint
is used more often compared to other linters. Also, unlike some
other languages, like for example, Python, where we would
have to manually implement an AST with Pylint, ESLint
already provides this functionality in its infrastructure, which
simplifies our efforts. All of this leads to a better ecosystem
for extending ESLint. We also write basic unit tests for the
linting rules to make sure they work as desired before running
the experiments.

B. Selected Design Patterns

In our research, we found several suggested design patterns
for web design, as well as some static code analysis rules that
have already been implemented [23]. Here are the anti-patterns
and design patterns we chose to implement analysis rules for,
and our motivation for choosing them. We also explain how we
set up similar code samples that either comply or violate these
rules to find the difference in energy consumption between the
two scenarios.

• Use lazy attribute: We implement a rule that warns
when using a element that is not set to load
lazily. We found from the MDN web documentation that
this can reduce energy consumption by delaying loading
an image until it is visible [24]. Our rule-compliant
experiment imports 16 images using loading=lazy,
and our violating sample uses loading=eager, the
latter being the default behavior.

• Preload link: Adding rel=preload to a <link>
element for all documents you know will be loaded on
your webpage was introduced as a form of speculative
loading, and is said to improve performance [25]. We are
interested in whether this performance increase has an

impact on energy consumption, so we have two samples
that import a stylesheet, one with a preload link and one
without.

• Avoid using canvas: When loading a webpage, about
half of the energy is used for rendering [26]. Developers
use <canvas> in cases that require detailed graphical
control or complex animations, but according to a previ-
ous study, CSS can have the best performance in terms of
accuracy and precision among different web technologies
[27]. We have set up a basic experiment comparing a
canvas with a CSS animation to see what the effect is on
energy consumption.

• Avoid using GIF: Animated GIFs were introduced in
1995, and there are more modern encodings available
that are more compressed [28]. Inspired by design pat-
tern 4002 from CNUMR, we experiment with how the
energy consumption of the more modern .webp format
compares to using .gif.

• Use standard fonts: Different font sizes have an im-
pact on client-side resource consumption, including CPU
usage, memory allocation, load time, and energy con-
sumption [29]. For this reason, we have implemented a
rule that checks for custom fonts and issues a warning for
fonts that are not in standard libraries. In our experiments,
we load either a standard font or a custom font.

• Avoid logging often: console.log() is not stan-
dardized, so its behavior is browser dependent. Depend-
ing on the browser engine, its functionality may be
either synchronous or asynchronous. Because JavaScript
is single-threaded [30], multiple logging calls may result
in blocking behavior. This may result in a higher energy
overhead compared to bundling multiple objects into a
single logging operation.

• Use document fragment: When appending multiple
elements to your HTML document using JavaScript, there
are two options: appending directly to the document, and
the lesser-known option of appending to a temporary
document fragment that is then added to the document at
once. The latter option can be more performant because
it does not require the document to be refreshed many
times [31], [32]. We create an experiment where we add
100, 000 elements either directly to the document or via
the document fragment.

• Use intersection observer: The Intersection Observer
API can be used to create a listener for a part of the
web page that is scrolled into view [33]. This allows you
to load only when something is in view. The alternative
solution is to use a scroll event listener to check if
something is in view each time the user scrolls. We will
create two experiments to compare these two behaviors.

• Use request animation frame: The
requestAnimationFrame functionality has been
introduced to automatically update animations at the
same rate as the display refresh rate. This API also
introduces other changes, such as pausing when the
page is in the background, which improves battery

3

life [34]. We are testing to see if there is a difference
in energy consumption when used in the foreground
between requestAnimationFrame and the original
setInterval behavior.

• Avoid expensive identifiers: A simple optimization is to
cache calls that are expensive to make, such as finding
items by some identifier using querySelectorAll.
We create a simple experiment that toggles some items
500 million times, either calling querySelectorAll
every time or only once before.

• Avoid resizing images: When an image is loaded into
a web page, but then needs to be displayed at a dif-
ferent size, the image must be resized, causing some
performance overhead. This is especially true when many
images are displayed [28]. CNUMR’s design pattern
34 recommends that images not be resized using their
width and height attributes. We create an experiment
to see if resizing versus not resizing has a significant
impact on energy consumption.

• Respect the bfcache: Finally, the back/forward cache
allows for faster navigation when returning to a previ-
ously visited page by caching the resources and heap of
that page. However, if an unload or beforeunload
event listener is set, the bfcache is not used, negating
this performance benefit [35]. We test how this affects
the energy consumption by testing it on a web page with
a complex canvas scene.

C. Experimental Setup

The experiments were conducted on an HP ZBook Studio
G5 118L5ES running Ubuntu 24.04. This laptop has an Intel
i9-9750H CPU, an Nvidia Quadro P2000 GPU, and 16 GB
of RAM. To minimize background noise when running the
experiments, we make sure that the configuration settings are
kept consistent across all experiment runs. When running the
experiments, we make sure that the laptop is in a controlled
environment, which includes

• No unnecessary applications/services are running.
• All external hardware is disconnected from the device.
• Notifications are turned off.
• Both WiFi and Bluetooth are turned off.
• The screen brightness of the display is set to 100%.

D. Experimental Procedure

The goal is to measure the difference in energy consump-
tion between inefficient JavaScript coding patterns and their
supposedly optimized counterparts. For each comparison, we
test a piece of code that follows a known anti-pattern against
a more efficient version based on established coding best
practices. For example, we take JavaScript code that loads
GIFs and compare it to code that loads more efficient for-
mats, such as WEBP. All measurements are performed using
EnergiBridge [36], which is an open-source cross-platform
energy measurement utility†. We chose joules as the unit of

†https://github.com/tdurieux/EnergiBridge

measurement because it provides an absolute amount of energy
measurement that tells us exactly how much energy was used
in total, independent of time variations.

For this study, we use Chromium because it is the basis
for many of the most widely used browsers, including Google
Chrome, Microsoft Edge, and Opera, making it a good repre-
sentative choice [37]. Testing on Chromium ensures that the
results are relevant to a wide range of browsers built on the
same engine. We use Chromium version 137.0.7104.0.

For each design pattern described in III-B, we perform
an experimental test by launching Chromium and separately
measuring the energy consumption on an HTML page contain-
ing the anti-pattern and another HTML page containing the
optimized version. To reduce bias, the order of the web pages
is randomized during each experiment. Because hardware
temperature can affect energy consumption, the very first run
(used as a warm-up) is excluded from the final analysis. In
total, we repeated this step 30 times for each rule.

Within each step, the following actions are performed:
1) Launch Chromium through EnergiBridge, getting 5 mea-

surements per second.
2) Open a new tab containing the test page (either the anti-

pattern or the optimized variant).
3) Wait 5 seconds to make sure all resources are fully

loaded.
4) Close the tab.
5) Wait 1 second for the tab to close properly.
6) Repeat steps 1-5 for the alternate variant (the one not

tested in the previous step).
7) Close Chromium and wait 5 seconds before proceeding

to the next step.
After each run, we reset all generated caches and user data

before proceeding to the next run.
One of the rules involves testing the efficiency of code that

is compatible and incompatible with the back-forward cache
(bfcache). The bfcache is a browser optimization that stores
pages in memory so that they do not have to be reloaded,
allowing for instant backward and forward navigation [35].
Because of this, the methodology for this particular rule has
an extra step where we navigate away and then back after
loading the web page to make sure we are measuring this
functionality correctly.

E. Output postprocessing

After running the experiments, we perform a number of data
processing steps to obtain our results. First, we select only
the samples from 1 second before the web page is opened
in the browser, to ensure that we do not miss any relevant
data because the web page may not be opened at exactly
the millisecond we expect. The selection is made until the
web page is closed, which is 11 seconds for all experiments
except the bfcache experiment, where it is 17 seconds. We
then sum the positive increases in PACKAGE ENERGY (J)
over this time period, which gives us an estimate of the
CPU and measurable motherboard energy consumption per
experiment. To remove any outliers, we use the Inter-Quartile

4

Range(IQR) method to remove samples outside the upper
and lower 1.5 ∗ IQR whiskers. We manually check that this
does not remove too many samples, but in our case, we did
not accept any measurements that were rejected by the IQR
calculation.

IV. RESULTS

In the table I, we show the results of the experiment. All
measurements are made in joules. To avoid confusion, a
violating rule corresponds to the anti-patterns described in
III-B, while a compliant rule represents its corresponding
optimized version. Our static analysis tool checks for the
presence of these violating rules, that is, it analyzes the code
for energy-inefficient anti-patterns, raises a warning if any are
found, and suggests using the optimized alternative.

We compute the Shapiro-Wilk test per experiment to see
if the distribution of samples follows the normal distribution.
We use the typical threshold of 0.05; any values above the
threshold imply that the experiment is normally distributed.
If this is the case, we apply Welch’s two-sided t-test to see
if the change in the mean between the two distributions is
significant, otherwise, there may still be a significant change
in mean that we can find with the two-sided Mann-Whitney
U test.

Following the result, we provide an analysis of the per-
centage changes in joules before and after applying the rules
in Table II. Here, in addition to the mean difference and the
percentage mean change, we also apply Cohen’s d to see if
we can classify this change as large by including the variance
of both distributions in the difference calculation.

Finally, we visualize the tables I and II using bar charts
to make the comparison easier. The blue bar in Figure 1
represents the energy consumed when rules are violated, and
the orange bar represents the energy consumed when rules are
not violated. Figure 2 shows the percentage change in energy
consumption after the rules are followed.

From Table I we can see that, except for ’Use request anima-
tion frame’, all other experiments follow a normal distribution,
which means that t-test p-values can be used in most cases.
’Use request animation frame’ is not normally distributed, but
it has a U-test p-value of < 0.001, and its shape is close to a
normally distributed graph according to its violin plot VII-A,
so we see it as a weaker statement of statistical significance,
suggesting that energy consumption is lower for the compliant
rule.

Here, the rules that are statistically significant (p-value <
0.05) are summarized:

• When energy consumption is higher if we comply with
the rule (the ”anti-pattern” is more efficient):

– Avoid using canvas
– Avoid using GIF

• When energy consumption is higher if we violate the
rule (the optimized pattern is more efficient):

– Avoid expensive identifiers
Finally, we conduct a Cohen’s d effect size analysis, the data

can be found in Table II. An absolute effect size of < 0.8

is considered small; anything bigger than 0.8 is considered
a large effect size [38]. Both results from the t-test and the
effect size analysis leave us with 3 rules that have a larger
significance:

• Large Effect Sizes (absolute Cohen’s d ≥ 0.8):
– Lower Energy Consumption

∗ Avoid expensive identifiers (Cohen’s d = 25.115)
– Higher Energy Consumption

∗ Avoid using canvas (Cohen’s d = -1.019)
∗ Avoid using GIF (Cohen’s d = -3.526)

From all the results, we can conclude that avoiding expen-
sive identifiers leads to dramatically lower energy consump-
tion. On the other hand, avoiding gifs and canvas leads to a
higher energy consumption. The remaining rules do not seem
to make a significant difference.

V. DISCUSSION AND LIMITATIONS

Results discussion. The results of our experiments present
some unexpected findings. The general assumption was that
known anti-patterns would result in higher energy consump-
tion compared to their optimized counterparts. However, most
of the cases did not show any statistically significant difference
in energy usage. Furthermore, there were more cases where
anti-patterns were more energy efficient than their counterparts
than the inverse.

The only rule that demonstrated a clear improvement in
energy efficiency when optimized was ”Avoid expensive iden-
tifiers”. Expensive identifiers are functions that repeatedly
access the DOM, such as querySelectorAll. Since DOM
access is a relatively costly operation in terms of both per-
formance and energy, this finding aligns well with what we
might expect. Reducing redundant DOM queries minimizes
computation, leading to improved energy efficiency.

Interestingly, a similar pattern, ’use document fragment’,
did not display the same behavior. This idiom aims to reduce
the number of direct DOM appends by, for example, batching
multiple appendChild() calls together using a document
fragment [31]. However, the energy consumption remained
nearly identical between the anti-pattern and the optimized
version in this case. One possible reason for this could be
that repeated DOM querying involves complex traversal of
the DOM, which is a complex and expensive computation
within the browser. In contrast, appending elements, even
multiple times, might not trigger as much layout recalculation
or reflow until rendering occurs. Another possible justification,
which applies to all other patterns as well, is that modern
JavaScript engines may already optimize certain known anti-
patterns under the hood. This could diminish the practical
impact of some coding optimizations.

Another rule where the optimized pattern did not have better
results was ’respect bfcache’. In this experiment, we included
an expensive canvas animation in the HTML to simulate
a heavy rendering process that could have benefited from
the back-forward cache. However, this setup does not reflect
typical real-world cases, where pages have to make multiple

5

TABLE I
STATISTICAL RESULTS OF ENERGY CONSUMPTION (J) FOR COMPLAINT AND VIOLATING SAMPLES PER RULE

Experiment Mean Std Dev Shapiro-Wilk t-test U-test
Compliant Violating Compliant Violating Compliant Violating p p

Use lazy attribute 11.624 11.494 0.330 0.400 0.760 0.223 0.194
Preload link 11.102 11.240 0.298 0.276 0.454 0.561 0.087
Avoid using canvas 11.448 11.081 0.276 0.430 0.560 0.554 < 0.001
Avoid using GIF 44.546 42.167 0.655 0.694 0.572 0.489 < 0.001
Use standard fonts 11.609 11.699 0.230 0.292 0.547 0.819 0.228
Avoid logging often 11.344 11.360 0.422 0.247 0.126 0.610 0.867
Use document fragment 77.685 77.332 2.473 2.274 0.387 0.14 0.566
Use intersection observer 11.453 11.358 0.312 0.295 0.885 0.693 0.256
Use request animation frame 35.657 37.548 0.834 2.062 0.63 0.033 < 0.001
Avoid expensive identifiers 96.843 160.024 1.696 3.127 0.880 0.625 < 0.001
Avoid resizing images 11.691 11.641 0.250 0.331 0.623 0.297 0.533
Respecting the BF-cache 289.987 291.696 6.926 6.756 0.487 0.856 0.337

Fig. 1. Energy consumption comparison between the unoptimized and optimized rules (Joules)

API calls to the backend upon loading. For these scenarios, the
results for the optimal pattern might have been significantly
better, as the responses for those calls would be cached within
the page.

Finally, ’avoid using canvas’ and ’avoid using GIF’ revealed
that the supposed anti-pattern was, in fact, more energy
efficient. For possible justifications, modern browsers often
offload rendering tasks like canvas drawing to the GPU, which
we did not account for in our energy measurements [39].
The GPU rendering might also make it more efficient than
using DOM-based animations. As for GIFs, since they are
generally less compressed, this might reduce the computational
effort required for decoding during rendering, leading to less
consumption.

Implications. This study has implications for developers
working on web development, browser engines, or linters, as
our findings help improve coding practices, tool efficiency, and
overall software quality.

The results provide insights into energy-inefficient coding
anti-patterns and their potential optimizations. These find-
ings can inform updates to coding guidelines and industry
standards, helping developers write cleaner, more energy-
efficient code that better aligns with best practices. In addition,
our study motivates that these idioms can be automatically
detected and enforced by linters, reducing inefficiencies at
scale. Understanding these patterns may also allow browser
engines to mitigate the impact of energy-inefficient code, or
even allow language developers to replace and deprecate the

6

Fig. 2. Percentage change in energy consumption (Joules)

TABLE II
STATISTICAL ANALYSIS OF ENERGY CONSUMPTION PER RULE

Experiment Mean diff Mean change Effect size
(∆X) (%) (Cohen’s d)

Use lazy attribute -0.130 -1.117% -0.354
Preload link 0.138 1.239% 0.480
Avoid using canvas -0.368 -3.213% -1.019
Avoid using GIF -2.379 -5.34% -3.526
Use standard fonts 0.089 0.767% 0.339
Avoid logging often 0.016 0.139% 0.046
Use document fragment -0.354 -0.456% -0.149
Use intersection observer -0.095 -0.829% -0.313
Use request animation frame 1.891 5.303% N/A
Avoid expensive identifiers 63.180 65.240% 25.115
Avoid resizing images -0.050 -0.424% -0.169
Respect the bfcache 1.709 0.589% 0.25

most problematic coding constructs.
Limitations. While our study provides insights into energy

consumption on the Web, we must also acknowledge certain
limitations that may affect the interpretation of the results.

First, the scope of the experiment is relatively small, mainly
due to time constraints. Having only 12 rules is a good starting
point for analyzing bad practices in web development, but
it is not representative of the full range of energy-intensive
behaviors on the web. It is also worth noting that the ex-
periment was conducted in just one language (JavaScript),
using one specific browser (Chromium) and one specific
linter (ESLint). A broader investigation that includes different
browser engines, frameworks, and linters would strengthen the
generalizability of the results.

Second, another important consideration is that the ex-
periments focus solely on measuring the energy consump-
tion of JavaScript execution in the browser. Other energy-
intensive factors, such as the cost of transmitting, decoding,
and caching media assets like GIFs and WEBP, are not
considered. Network-related energy consumption is outside the

scope of this study.
Third, the examples used in the experiments are not repre-

sentative of code found in production environments. The test
instances consist of isolated patterns within an HTML page,
which may not fully reflect how these patterns are typically
integrated into real-world websites. As a result, there may
be differences in energy consumption when these elements
interact with other components, scripts, or user behavior. To
obtain more realistic results, future experiments should be
conducted in real-world projects to evaluate the effectiveness
of our findings in practical scenarios.

Furthermore, while the code used in these experiments
is functional and provides meaningful insights, it is likely
not optimal. There may be opportunities for efficiency and
correctness improvements within the codebase. In addition,
the implementation of the experiment is relatively simple,
primarily opening a browser and, in the case of the bfcache
rule, navigating away and back. This functionality can be
extended to account for more complex behavior, allowing for a
more comprehensive analysis of energy consumption in more
diverse scenarios.

Finally, it is important to recognize that this work is
only concerned with energy consumption; there is more to
consider. For example, lazy loading of some web elements
may indeed reduce energy consumption. However, according
to a Cloudflare report, lazy loading can result in multiple server
requests as users navigate the page, potentially adding over-
head and impacting performance [40]. Therefore, the choice
between implementation and energy consumption depends
on the specific requirements of a project. It is also worth
noting that there is a trade-off between efficiency/performance
and maintainability. In some cases, the most energy-efficient
solution may result in code that is harder to understand,
modify, or debug. So, developers need to consider this for their
codebases. Our goal is to educate users about potential energy

7

hotspots so that they can make informed decisions based on
their own needs.

VI. CONCLUSION AND FUTURE WORK

In conclusion, our work demonstrates that incorporating
energy awareness into standard web development practices
can yield benefits in sustainable software engineering, thereby
reducing the environmental impact of software. By focusing
on JavaScript and extending ESLint with custom rules, we
have identified how common coding patterns affect energy
consumption in measurable ways. While some optimizations
(such as caching expensive identifiers) led to striking improve-
ments in overall energy consumption, other presumed ”green”
patterns had minimal or even counterintuitive effects.

These findings highlight the complexity of energy-aware de-
velopment: performance optimizations do not always translate
into lower energy consumption, and some best practices (e.g.,
avoiding GIFs altogether) may involve tradeoffs in terms of
feature set, user experience, or code maintainability. Although
our experiments focused only on Chromium under controlled
conditions, they illustrate the value of tool-assisted, empirical
investigations into software sustainability.

Future Work. Looking ahead, this research opens up
several avenues for future work. The most valuable direc-
tion would be to integrate these experiments into real-world
projects to validate the effectiveness of the approach in prac-
tical web applications rather than isolated test cases.

Similarly, extending the scope beyond JavaScript would
be highly valuable. A large quantity of websites today rely
on frameworks like jQuery, React, or Angular [41]. These
frameworks introduce much more functionality and com-
plexity because their patterns are independent of JavaScript.
Thus, identifying energy hotspots in these tools can provide
significant insight into optimizing real-world applications.

In addition, future studies could improve the experimental
setup by conducting tests in more diverse environments, across
different browsers (e.g., Firefox, Safari) and different devices,
to assess the consistency of the results and mitigate potential
biases. This would help determine whether the energy savings
recommendations generalize across different platforms or re-
quire browser-specific optimizations.

Another natural extension would be to expand the set of
rules evaluated to include a wider range of energy consumption
patterns. Analyzing more complex functionality would provide
a more comprehensive analysis of consumption across the web.

Finally, a user study could be conducted to assess whether
developers find our linting tool useful and to get feedback
on possible ways to improve the tool. Such a study would
be crucial for understanding real-world usability, including
whether the tool’s energy-saving rules introduce unintended
trade-offs, such as reduced code readability, maintainability,
or even runtime performance. Understanding these factors is
essential, as we hope this study encourages the push towards
integrating energy-aware linting tools into existing continuous
integration pipelines.

REFERENCES

[1] H. Xu, N. Mitchell, M. Arnold, A. Rountev, and G. Sevitsky, “Software
bloat analysis: Finding, removing, and preventing performance problems
in modern large-scale object-oriented applications,” 11 2010, pp. 421–
426.

[2] P. Rani, J. Zellweger, V. Kousadianos, L. Cruz, T. Kehrer, and
A. Bacchelli, “Energy patterns for web: An exploratory study,”
in Proceedings of the 46th International Conference on Software
Engineering: Software Engineering in Society (ICSE-SEIS). IEEE,
2024, pp. 12–22. [Online]. Available: https://arxiv.org/abs/2401.06482

[3] B. Couriol, “Co2.js helps developers track their application’s
carbon footprint,” InfoQ, 05 2024. [Online]. Available: https:
//www.infoq.com/news/2024/05/co2-js-carbon-footprint-release

[4] “Stack overflow developer survey,” 2024, accessed: 19 March 2025.
[Online]. Available: https://survey.stackoverflow.co/2024/technology#
top-paying-technologies

[5] M. Selakovic and M. Pradel, “Performance issues and optimizations in
javascript: An empirical study,” in 2016 IEEE/ACM 38th International
Conference on Software Engineering (ICSE), 2016, pp. 61–72.

[6] T. Imura, “10 recommendations for green soft-
ware development,” Green Software Foundation, 11
2021. [Online]. Available: https://greensoftware.foundation/articles/
10-recommendations-for-green-software-development

[7] R. D. Caballar, “We need to decarbonize software: The way we write
software has unappreciated environmental impacts,” IEEE Spectrum,
vol. 61, no. 4, pp. 26–31, 2024.

[8] K. Carter, S. M. G. Ho, M. M. A. Larsen, M. Sundman, and M. H.
Kirkeby, “Energy and time complexity for sorting algorithms in java,”
2024. [Online]. Available: https://arxiv.org/abs/2311.07298

[9] J. Pallister, S. J. Hollis, and J. Bennett, “Identifying compiler options to
minimize energy consumption for embedded platforms,” The Computer
Journal, vol. 58, no. 1, p. 95–109, Nov. 2013. [Online]. Available:
http://dx.doi.org/10.1093/comjnl/bxt129

[10] S. Hu and L. K. John, “Impact of virtual execution environments
on processor energy consumption and hardware adaptation,” in
Proceedings of the 2nd International Conference on Virtual Execution
Environments, ser. VEE ’06. New York, NY, USA: Association
for Computing Machinery, 2006, p. 100–110. [Online]. Available:
https://doi.org/10.1145/1134760.1134775

[11] T.-J. Yang, Y.-H. Chen, J. Emer, and V. Sze, “A method to estimate the
energy consumption of deep neural networks,” in 2017 51st Asilomar
Conference on Signals, Systems, and Computers, 2017, pp. 1916–1920.

[12] N. C. Zakas, “Eslint: Pluggable javascript linter,” https://eslint.org, 2013,
accessed: April 4, 2025.

[13] A. Kovalyov, “Jshint: A javascript code quality tool,” https://jshint.com,
2011, accessed: April 4, 2025.

[14] C. Brosch, “Influence of static code analysis on energy consumption of
software,” in EnviroInfo 2023: Environmental Informatics. Springer,
2023, pp. 1–12.

[15] A. A. Bangash, K. Eng, Q. Jamal, K. Ali, and A. Hindle, “Energy
consumption estimation of api-usage in smartphone apps via static
analysis,” in 20th International Conference on Mining Software
Repositories (MSR). IEEE/ACM, 2023, pp. 272–283. [Online].
Available: https://doi.org/10.1109/MSR59073.2023.00042

[16] L. Li, Y. Liu, Y. Liu, D. Lo, L. Jiang, and L. Zhang, “Assisting
developers perform empirical study on energy consumption of mobile
applications,” in 2020 IEEE/ACM 7th International Conference on
Mobile Software Engineering and Systems (MOBILESoft). IEEE, 2020,
pp. 13–24.

[17] S. Wegener, K. K. Nikov, J. Nunez-Yanez, and K. Eder,
“Energyanalyzer: Using static wcet analysis techniques to estimate the
energy consumption of embedded applications,” in 21st International
Workshop on Worst-Case Execution Time Analysis (WCET 2023),
ser. Open Access Series in Informatics (OASIcs), vol. 114. Schloss
Dagstuhl–Leibniz-Zentrum für Informatik, 2023, pp. 9:1–9:14. [Online].
Available: https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.
WCET.2023.9

[18] D. Sousa, F. Medeiros, M. Ribeiro, V. Alves, P. Borba, N. Siegmund, and
J. Guo, “Statically analyzing the energy efficiency of software product
lines,” Journal of Software Engineering Research and Development,
vol. 6, no. 1, pp. 1–18, 2018.

[19] N. Grech, K. Georgiou, S. Kerrison, Z. Wang, and K. Eder, “Static
analysis of energy consumption for llvm ir programs,” in Proceedings

8

https://arxiv.org/abs/2401.06482
https://www.infoq.com/news/2024/05/co2-js-carbon-footprint-release
https://www.infoq.com/news/2024/05/co2-js-carbon-footprint-release
https://survey.stackoverflow.co/2024/technology#top-paying-technologies
https://survey.stackoverflow.co/2024/technology#top-paying-technologies
https://greensoftware.foundation/articles/10-recommendations-for-green-software-development
https://greensoftware.foundation/articles/10-recommendations-for-green-software-development
https://arxiv.org/abs/2311.07298
http://dx.doi.org/10.1093/comjnl/bxt129
https://doi.org/10.1145/1134760.1134775
https://eslint.org
https://jshint.com
https://doi.org/10.1109/MSR59073.2023.00042
https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.WCET.2023.9
https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.WCET.2023.9

of the 18th International Workshop on Software and Compilers for
Embedded Systems (SCOPES). ACM, 2015, pp. 12–21. [Online].
Available: https://doi.org/10.1145/2764967.2764974

[20] Y. Huizhan, C. Juan, and Y. Xuejun, “Static wcet analysis based
compiler-directed dvs energy optimization in real-time applications,” in
International Conference on Advances in Computer Systems Architec-
ture. Springer, 2006, pp. 108–121.

[21] C. C. N. Responsable, “115 web ecodesign best practices,” 2024,
accessed: 2025-04-03. [Online]. Available: https://collectif.greenit.fr/
ecoconception-web/

[22] R. Pereira, M. Couto, F. Ribeiro, R. Rua, J. Cunha, J. a. P. Fernandes,
and J. a. Saraiva, “Energy efficiency across programming languages:
how do energy, time, and memory relate?” in Proceedings of the
10th ACM SIGPLAN International Conference on Software Language
Engineering, ser. SLE 2017. New York, NY, USA: Association
for Computing Machinery, 2017, p. 256–267. [Online]. Available:
https://doi.org/10.1145/3136014.3136031

[23] Green-Code-Initiative, “Creedengo-javascript/eslint-plugin/readme.md
at main · green-code-initiative/creedengo-javascript,” Mar
2025. [Online]. Available: https://github.com/green-code-initiative/
creedengo-javascript/blob/main/eslint-plugin/README.md

[24] Mozilla, Lazy Loading - Web Performance, MDN Web Docs, 2025,
accessed: 2025-04-03. [Online]. Available: https://developer.mozilla.
org/en-US/docs/Web/Performance/Guides/Lazy loading

[25] ——, rel=preload - HTML: Hypertext Markup Language, MDN Web
Docs, Mar. 2025, accessed: 2025-04-03. [Online]. Available: https:
//developer.mozilla.org/en-US/docs/Web/HTML/Attributes/rel/preload

[26] B. Poulain and S. Fraser, “How web content can affect power
usage,” August 27 2019. [Online]. Available: https://webkit.org/blog/
8970/how-web-content-can-affect-power-usage/

[27] P. Garaizar, M. A. Vadillo, and D. L. de Ipiña, “Presentation
accuracy of the web revisited: Animation methods in the HTML5 era,”
PLoS ONE, vol. 9, no. 10, p. e109812, 2014. [Online]. Available:
https://doi.org/10.1371/journal.pone.0109812

[28] CNUMR, 115 Web Ecodesign Best Practices, GitHub, 2025,
accessed: 2025-04-03. [Online]. Available: https://github.com/cnumr/
best-practices

[29] B. Dornauer, W. Vigl, and M. Felderer, “On the role of font formats
in building efficient web applications,” 2023. [Online]. Available:
https://arxiv.org/abs/2310.06939

[30] MDN Web Docs contributors, Main Thread, Mozilla, Dec. 2024,
accessed: 2025-04-03. [Online]. Available: https://developer.mozilla.
org/en-US/docs/Glossary/Main thread

[31] Mozilla, Document: createDocumentFragment() Method - Web
APIs, MDN Web Docs, Mar. 2024, accessed: 2025-04-03.
[Online]. Available: https://developer.mozilla.org/en-US/docs/Web/API/
Document/createDocumentFragment

[32] MDN Web Docs contributors, JavaScript Performance Optimization,
Mozilla, 2025, accessed: 2025-04-03. [Online]. Available: https://
developer.mozilla.org/en-US/docs/Learn web development/Extensions/
Performance/JavaScript#tips for writing more efficient code

[33] MDN Web Docs, Intersection Observer API, Mozilla, 2025, accessed:
2025-04-03. [Online]. Available: https://developer.mozilla.org/en-US/
docs/Web/API/Intersection Observer API

[34] MDN Web Docs contributors, Window: requestAnimation-
Frame() method, Mozilla, 2025, accessed: 2025-04-03. [Online].
Available: https://developer.mozilla.org/en-US/docs/Web/API/Window/
requestAnimationFrame

[35] ——, bfcache, Mozilla, Sep. 2024, accessed: 2025-04-03. [Online].
Available: https://developer.mozilla.org/en-US/docs/Glossary/bfcache

[36] J. Sallou, L. Cruz, and T. Durieux, “Energibridge: Empowering
software sustainability through cross-platform energy measurement,”
arXiv preprint arXiv:2312.13897, 2023. [Online]. Available: https:
//arxiv.org/abs/2312.13897

[37] “What is chromium, and how does it en-
hance your browser?” Microsoft, 2025. [On-
line]. Available: https://www.microsoft.com/en-us/edge/learning-center/
what-is-chromium-how-does-it-enhance-your-browser?form=MA13I2

[38] N. U. Library, “Cohen’s d - statistics resources,” accessed: April 3, 2025.
[Online]. Available: https://resources.nu.edu/statsresources/cohensd

[39] S. Chikuyonok. (2016, Dec.) Css gpu animation: Doing
it right. Accessed: 2025-04-04. [Online]. Available: https:
//www.smashingmagazine.com/2016/12/gpu-animation-doing-it-right/

[40] “What is lazy loading?” Cloudflare.com, 2024. [Online]. Available:
https://www.cloudflare.com/learning/performance/what-is-lazy-loading/

[41] “Stack overflow developer survey,” 2024, accessed: 4 April 2025.
[Online]. Available: https://survey.stackoverflow.co/2024/technology#
1-web-frameworks-and-technologies

VII. APPENDIX

A. Result violin plots

Each plot shows the results for the respective experiment.
Note that for ”all”, each of the samples is included, while for
”no outliers”, we remove the outliers as described in section
III-E.

9

https://doi.org/10.1145/2764967.2764974
https://collectif.greenit.fr/ecoconception-web/
https://collectif.greenit.fr/ecoconception-web/
https://doi.org/10.1145/3136014.3136031
https://github.com/green-code-initiative/creedengo-javascript/blob/main/eslint-plugin/README.md
https://github.com/green-code-initiative/creedengo-javascript/blob/main/eslint-plugin/README.md
https://developer.mozilla.org/en-US/docs/Web/Performance/Guides/Lazy_loading
https://developer.mozilla.org/en-US/docs/Web/Performance/Guides/Lazy_loading
https://developer.mozilla.org/en-US/docs/Web/HTML/Attributes/rel/preload
https://developer.mozilla.org/en-US/docs/Web/HTML/Attributes/rel/preload
https://webkit.org/blog/8970/how-web-content-can-affect-power-usage/
https://webkit.org/blog/8970/how-web-content-can-affect-power-usage/
https://doi.org/10.1371/journal.pone.0109812
https://github.com/cnumr/best-practices
https://github.com/cnumr/best-practices
https://arxiv.org/abs/2310.06939
https://developer.mozilla.org/en-US/docs/Glossary/Main_thread
https://developer.mozilla.org/en-US/docs/Glossary/Main_thread
https://developer.mozilla.org/en-US/docs/Web/API/Document/createDocumentFragment
https://developer.mozilla.org/en-US/docs/Web/API/Document/createDocumentFragment
https://developer.mozilla.org/en-US/docs/Learn_web_development/Extensions/Performance/JavaScript#tips_for_writing_more_efficient_code
https://developer.mozilla.org/en-US/docs/Learn_web_development/Extensions/Performance/JavaScript#tips_for_writing_more_efficient_code
https://developer.mozilla.org/en-US/docs/Learn_web_development/Extensions/Performance/JavaScript#tips_for_writing_more_efficient_code
https://developer.mozilla.org/en-US/docs/Web/API/Intersection_Observer_API
https://developer.mozilla.org/en-US/docs/Web/API/Intersection_Observer_API
https://developer.mozilla.org/en-US/docs/Web/API/Window/requestAnimationFrame
https://developer.mozilla.org/en-US/docs/Web/API/Window/requestAnimationFrame
https://developer.mozilla.org/en-US/docs/Glossary/bfcache
https://arxiv.org/abs/2312.13897
https://arxiv.org/abs/2312.13897
https://www.microsoft.com/en-us/edge/learning-center/what-is-chromium-how-does-it-enhance-your-browser?form=MA13I2
https://www.microsoft.com/en-us/edge/learning-center/what-is-chromium-how-does-it-enhance-your-browser?form=MA13I2
https://resources.nu.edu/statsresources/cohensd
https://www.smashingmagazine.com/2016/12/gpu-animation-doing-it-right/
https://www.smashingmagazine.com/2016/12/gpu-animation-doing-it-right/
https://www.cloudflare.com/learning/performance/what-is-lazy-loading/
https://survey.stackoverflow.co/2024/technology#1-web-frameworks-and-technologies
https://survey.stackoverflow.co/2024/technology#1-web-frameworks-and-technologies

10

11

	Introduction
	Background and Related Work
	Methodology
	Language and Linter Selection
	Selected Design Patterns
	Experimental Setup
	Experimental Procedure
	Output postprocessing

	Results
	Discussion and Limitations
	Conclusion and Future Work
	References
	Appendix
	Result violin plots

