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Abstract—With growing environmental concerns and energy
costs, efficiency is a key issue. To reflect on such efficiency, mea-
suring and comparing energy consumption plays an important
role, as it allows developers and organizations to identify the most
energy-efficient software and hardware combinations. However,
energy usage comparisons between systems can be challenging
due to the inherent differences between these systems. These
include differences in hardware, power measurement tools, the
way energy consumption is reported, and background processes.
Thus, transparent and standardized benchmarks are needed to
motivate simple energy efficiency measurement and comparison.
Our paper presents a machine agnostic benchmark built upon
the foundation of MLPerf, an industry-standard benchmarking
suite for machine learning performance. Energy consumption is
measured through an aggregation of EnergiBridge and Carbon-
Tracker measurements, allowing for straightforward comparison
of different machine learning models.
Index Terms—sustainable software engineering, computer vision,
machine learning, energy efficiency benchmarking

I. INTRODUCTION

As machine learning (ML) continues to advance, the
environmental impact of this field has become an increasing
concern. Deep learning models [1], including models within
the area of computer vision, require substantial computational
resources for training and inference, leading to high energy
consumption and consequently high carbon footprints [2].
This growing energy demand raises critical questions about
the sustainability of ML research and deployment. While
model accuracy and efficiency have traditionally been the
main focus point of ML research [3], energy consumption
remains a relatively new aspect. Existing ML benchmarks
primarily evaluate performance metrics like speed and
accuracy [4] but often lack detailed energy profiling. Without
a standardized methodology to compare machine learning
models in terms of energy efficiency, it becomes difficult to
optimize ML workloads for sustainability [5].

The environmental impact of machine learning models is
substantial and growing. For example, training a single large
language model like GPT-3 [6] can produce approximately
552 metric tons of CO2 equivalent, comparable to the yearly
emissions of 120 passenger vehicles [7]. In a similar way,
the training process for a large Transformer model using
neural architecture search can emit up to 626.155 pounds
(approximately 284 metric tons) of CO2, which is nearly
five times the lifetime emissions of an average American car
[8]. Even smaller models have a significant impact: training
a single BERT [9] base model on GPU is estimated to emit
about 652 kg of CO2, equivalent to a round-trip flight for one
passenger between New York and San Francisco [10]. These
numbers underscore the immediate need for energy-efficient
machine learning practices and the importance of developing
standardized benchmarks for measuring and comparing
energy consumption across different models and hardware
configurations.

For this reason, we propose the development of a cross-
system benchmark designed to provide reproducible energy
consumption reports that are independent of specific hardware
and software environments. The goal is to make energy
benchmarking simpler, more accessible, and easier to
interpret, especially for smaller workloads or experiments run
on low-power devices.

It does this through the standardization of energy consumption
measurements across systems by implementing a CPU-
intensive workload with support for diverse operating systems
and architectures: Windows, Linux, macOS, x86, and ARM
(depending on availability).

Energy consumption is measured using built-in tools, such
as nvidia-smi [11] for GPUs or system-level power
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statistics when available. The benchmark automatically
selects the most reliable measurement source on the system.
To allow fair comparisons between hardware platforms with
different performance and power characteristics, we apply
normalization techniques such as scaling energy between
observed extremes and using FLOPS-based adjustments. The
results are stored in standardized formats (e.g., JSON or
CSV) for easy analysis.

Our initial experiment focuses on evaluating energy
consumption for two widely used computer vision models
EfficientNet [12] and Vision Transformers (ViT) [13], on
Imagenette, [14], a subset of the ImageNet-1K dataset
consisting of 10 classes. The choice is a standard point for
evaluating how system parameters affect energy per inference,
latency and accuracy levels. By supporting smaller workloads
and enabling consistent measurements across platforms, our
benchmark fills a gap left by large-scale efforts like MLPerf
[15] and supports more sustainable and interpretable ML
development.

The further chapters of this paper are as follows: Section
II provides background information on energy consumption
in ML and existing benchmarking approaches. Section III
explains the methodology, including our energy measurement
techniques and normalization methods. Section IV presents our
results, and in Section V, we discuss our findings, limitations,
threats and potential implications. Lastly, Section VI concludes
the paper and suggests directions for future work.

II. RELATED WORKS

The benchmarking tool known as MLPerf [15] provides
reliable assessment capabilities for machine learning. The
benchmark system focuses its evaluation process on the
run-time speed and accuracy of models while performing
image classification, object detection or translation tasks.
Its benchmarks are designed for consistent hardware setups
where everything is carefully controlled. While MLPerf does
include some energy-related measurements, its main goal is
performance, especially speed and throughput.

In our project, we propose a different approach. We aim to
support flexible, lightweight experiments that can run on any
system instead of requiring a strict setup. Our benchmark can
work with the tools and data available on each machine, and
it includes techniques for comparing results across different
hardware, even when conditions vary.

Other projects examine energy use across models and
systems, including comparisons based on FLOPS [16],
complete training cycles, or scaling between high and
low-energy-consuming models. These studies offer useful
methods for measuring and interpreting energy data, and we
draw inspiration from them in the manner we normalize our
results and design our experiments.

In addition, Latenergy [17] presents a framework for real-
time energy-efficient inference benchmarking, which is in
line with our interest in making energy performance more
accessible and interpretable. While their focus is on real-time
applications, we adopt some of their ideas such as focusing
on per-inference energy and using standardized formats for
output, to inform the design of our benchmark.

Latenergy sets itself apart by focusing on low-latency
inference tasks and offering detailed energy measurements
at the level of individual inference operations. This allows
users to assess trade-offs between performance and energy
cost. This ability to balance trade-offs is especially helpful
in situations when strict energy budgets are important. This
trade-off is closely related to our research since it allows for
more intelligent decision-making about the trade-off when the
user has a better grasp of the energy consumption of models.

III. METHODOLOGY

The following section presents the design of our benchmarking
framework for evaluating the energy efficiency of computer
vision models across different hardware platforms. Our goal
is to enable fair and reproducible comparisons of energy
usage, even when experiments are run on systems with varying
performance and power profiles. We achieve this through a
combination of containerized execution, multi-source energy
measurement, and normalization techniques that make results
cross-machine comparable. The methodology has five key
components: benchmark setup, model selection and dataset,
evaluation metrics, normalization techniques, and output us-
ability.

A. Benchmark Setup

Our benchmark was created to be cross-platform, capable of
running on Windows, macOS, and Linux systems, across both
x86 and ARM architectures. In order to keep consistency
and minimize external noise, all models were executed inside
Docker containers. This decision minimized the impact of
background processes and system variability.

Energy consumption was measured using a combination
of tools: EnergyBridge and CarbonTracker. Energy-
Bridge runs on the host system and logs energy consumption at
the hardware level, while CarbonTracker tracks emissions and
power draw during model inference from within the container.
Depending on hardware availability, we selected the most
appropriate energy source dynamically (e.g., nvidia-smi
for GPUs or CPU-level power readings when available).

B. Models and Dataset

For our experiments, we selected two widely used image
classification architectures: EfficientNet[12] and Vision
Transformer (ViT)[13]. These models were chosen due to
their popularity in energy-aware computer vision tasks and
their distinct approaches to optimizing performance. This

2



experiment used both models without further training on the
chosen dataset.

EfficientNet is a family of CNN models that scale depth,
width, and resolution in a compound manner to achieve high
accuracy with fewer parameters and lower computational cost.
It is known for being lightweight and performant, making it
a good candidate for energy benchmarking.

Vision Transformer (ViT) represent a shift from traditional
convolutional architecture by applying the transformer
architecture to image patches. ViTs process images as
sequences of patches, enabling global context modeling early
in the network. While transformers typically require more
computational resources than CNNs, they offer competitive
accuracy on large datasets [13]

The models are evaluated using a subset of the ImageNet-1K
dataset [14]. ImageNet-1K is a widely used benchmark for
classification tasks and offers a lightweight, low-resource
workload that makes it ideal for cross-platform evaluation.
All images are resized to a resolution of 224×224, matching
the expected input dimensions of both models. Models were
specifically trained on the ImageNet-1K dataset for 1000
subclasses, so the performance is relatively high.

Since the original MLPerf repository supports only a limited
set of models, we extend it by integrating our own inference
scripts for EfficientNet and ViT, while preserving MLPerf’s
logging and measurement structure where applicable.

C. Evaluation Metrics

Our benchmark evaluates models using the following metrics:

• Total Energy Consumption (J) — The total amount of
energy used during inference, measured using Energy-
Bridge or CarbonTracker.

• Latency (ms) — The time taken per inference.
• Normalized Energy Score — Energy consumption nor-

malized against a duo reference baseline (see next sub-
section).

• Penalty Score — A compound metric that increases with
high energy usage or latency, useful for detecting outliers.

D. Normalization Techniques

As our focus is to enable a fair comparison across different
hardware setups, we used normalization techniques for ac-
curacy and general energy consumption metrics. For energy
normalization, we adopt the formula: For energy, we report
the average energy consumed per inference:

Energyper inference =
Total Energy Consumption (J)

Number of Inferences

This metric abstracts away differences in batch size or in-
ference time, allowing model comparisons on a per-decision

basis. Where relevant, we also compute energy per FLOP to
estimate computational efficiency:

Energyper FLOP =
Total Energy Consumption

FLOPs
In addition, we adopt a min-max normalization approach
inspired by MLPerf’s methodology [15]:

Normalized Energy Score =
Emodel − Emin

Emax − Emin

Here, Emin and Emax are defined from the observed lower
and upper bounds of energy usage across all evaluated
models. This relative metric helps us compare models on a
common scale, mitigating skew from hardware variability.

The preprocessing methods follow a standardized procedure to
make the data usable among different models. The pre-trained
models require inputs with dimensions 224×224. Hence, they
were resized and normalized using Standard normalization
technique (mean and standard deviation).

The analysis of energy-performance trade-offs becomes
more comprehensive by reporting accuracy as absolute (e.g.
top-1 accuracy) values and relative to a chosen baseline model.

The normalization strategies as a whole allow model assess-
ments which maintain independence while producing results
that align with actual deployment conditions.

E. Experimental Setup

The experiment is implemented as a stand-alone Python script.
Its primary function is to measure the energy consumption
of various different implementations of image classification
models, using the MLPerf Loadgen interface in combination
with CodeCarbon and EnergiBridge. The script is designed
to be modular to allow for the input of data, preprocessing
functions, and model types given as command-line arguments.
Accepted arguments are as follows:

• model — Either the path to a local model file, or the
model name on Huggingface.

• dataset — The path to the dataset to be used for
inference.

• model type — Used to designate the file type of the
locally stored model, or to state that it is hosted on hug-
gingface. Accepted types are PyTorch, onnx, TensorFlow,
and HuggingFace

• scenario — The MLPerf scenario type. Specifies the
inference workload pattern, to model real-world appli-
cation settings. Accepted scenarios are SingleStream and
Offline.

• mode - The MLPerf test mode. Defines the goal of a
given test. Accepted modes are PerformanceOnly and
AccuracyOnly.

• preprocess fn file - File path to the custom user-given
preprocessing function.
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• task type - The type of machine learning task to run.
Currently only classification is implemented.

• flops - The user-defined number of FLOPs (Floating Point
Operations). Used to measure the efficiency of the model.

• labels dict - The path to the directory containing the
classification labels for a dataset.

• energiBridge - The path to the EnergiBridge executable.
• model architecture - The model architecture to load

weights into. This is only relevant for PyTorch models
where only the weights are saved.

The core benchmark is build upon MLPerf Loadgen, with
which we implement a custom SystemUnderTest (SUT)
class. This class loads a pre-trained model from either a
file or imports it using Huggingface. It also performs data
handling by loading input samples from the provided dataset
and applying either a user defined or default preprocessing
function. Finally, it performs the inference execution.
It receives queries, processes them through the model and
returns the results. Loadgen is configured using the command-
line arguments ’scenario’ and ’mode’.

To capture energy consumption during inference, the
script activates two logging tools:

• CodeCarbon – Provides estimated energy usage based
on CPU/GPU utilization and regional carbon intensity. It
is initialized at the start of inference and stopped upon
completion.

• Energibridge – Offers more precise hardware telemetry
by logging CPU/GPU/RAM power draw. It uses a context
manager that wraps around the LoadGen execution block
and saves metrics to a CSV file.

When the experiment is finished a csv file is generated with the
results. These are dependent on the mode of the experiment.
In case of performancyOnly mode, it will give the sample id’s
with the amount of latency in ms for each. In the case of
accuracyOnly mode it gives the following:

• experiment name – Name of the model that was tested.
• model architecture – Architecture that was imple-

mented to the weights, if those were given.
• accuracy – The accuracy of the model on the given

dataset.
• energy wh – The total consumed energy during inference

in watt-hours.
• normalized energy – The normalized energy score as

mentioned in section 3D.
• penalty factor – The penalty score as mentioned in

section 3C.
• ede score – The Energy–Delay–Efficiency (EDE) score.

Used to create a composite score that shows how well the
model performs both in terms of accuracy and resource
consumption.

• flops – The amount of FLOPs (Floating Point Operations)
given by the user.

• task type – The machine learning task that was per-
formed.

• timestamp – The timestamp the experiment finished.

We performed this experiment in PerformancyOnly once for
both models on a laptop running Windows and another time
for both models on a MacBook Air. We ran the AccuracyOnly
expiriment twice for each model on a laptop running Windows
and three times for each models on a Macbook Air. The
laptop we used was an ASUS Vivobook with the following
specifications:

• Windows 11 home.
• 12th Gen Intel(R) Core(TM) i7-12650H 2.30 GHz pro-

cessor
• 16 GB RAM.
• Brightness level of 30
• Resolution of 1920 x 1200.
• Wifi turned off.

The Macbook Air we used for the experiments had these
specifications:

• macOS Sonoma 14.6.1
• Apple M3 chip
• 16 GB RAM.
• Full brightness level with auto-adjustment turned off
• Resolution of 2560 x 1664
• Power-saving mode turned off
• Wifi turned off.

Further instructions can be found in the README.md found
in vision/general in the repository (see Section A).

IV. RESULTS

This section presents the results of our energy benchmarking
experiments across different CNNs and hardware configura-
tions. We analyze the performance of EfficientNet and ViT
on ImageNet-1k dataset, reduced to 10 classes for faster
experimentation, focusing on key metrics such as energy
consumption, inference latency, and accuracy. By applying
our normalization techniques, we provide a cross-platform
comparison highlighting the trade-offs between energy effi-
ciency and model performance. The results are discussed in
the context of both absolute measurements and relative scores
to ensure hardware-independent insights.

On Windows, we see an inverse trend(Figure5): ViT is doing
better in terms of accuracy, but at obviously higher cost.
This suggests that platform-specific factors, such as driver
optimization, system background processes, influence energy
efficiency and model behavior. Overall, the accuracy vs.
energy plots reveal that EfficientNet maintains, overall a
better balance between resource usage and output quality
across platforms. These results support our benchmark’s goal:
enabling fair and reproducible energy-performance trade-offs
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Fig. 1: Energy per inference for EfficientNet and ViT across
macOS and Windows platforms.

Fig. 2: Latency per inference (in milliseconds) averaged across
platforms.

Fig. 3: Normalized energy scores based on FLOPs and energy
consumption across platforms.

through normalized metrics and multi-platform analysis.

On macOS (Darwin), EfficientNet-B0 consistently
outperforms ViT in energy efficiency, latency, and accuracy. It
achieves slightly higher accuracy ( 99.86%) while consuming
moderately more energy per inference. ViT, despite its
transformer-based architecture, shows slightly lower accuracy
and better energy usage per inference, but falls short in overall
normalized energy score. Latency measurements reveal that
EfficientNet offers faster inference with lower variability,
while ViT suffers from increased computational demands.
MLPerf’s LoadGen ensures consistent query evaluation,

Fig. 4: Accuracy vs. Total Energy for macOS (darwin).

Fig. 5: Accuracy vs. Total Energy for Windows.

allowing Darwin’s optimized hardware and software stack,
especially on Apple Silicon, to showcase EfficientNet’s
strengths in real-time, energy-aware scenarios.

Different FLOPs values were assigned to each model to reflect
their inherent architectural complexity and enable fair energy
normalization. EfficientNet-B0 was set to approximately 390
million FLOPs, aligning with its lightweight convolutional
design optimized for mobile inference. In contrast, ViT-base
(patch16-224) was assigned 17 billion FLOPs to account
for its transformer-based architecture, which includes heavy
matrix multiplications and attention mechanisms. These
FLOPs estimates allowed MLPerf’s normalized energy score
to adjust for computational load, ensuring comparisons reflect
efficiency relative to model size and not just raw energy usage.

V. DISCUSSION

This section will discuss the interpretation of the results, as
well as the limitations of our project. Furthermore, threats to
validity will be discussed and, finally, the justification and
implications will be explored.

A. Interpretation of Results

The results across all figures reveal consistent differences
in the energy and performance characteristics of the two
evaluated models, EfficientNet and ViT across both macOS
and Windows platforms.
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Figure 1 shows that EfficientNet requires significantly less
energy per inference compared to ViT, which aligns with
EfficientNet’s lightweight architecture. This makes it a
suitable candidate for energy-constrained environments such
as mobile or embedded systems.

Latency measurements in Figure 2 indicate that EfficientNet
also performs faster inference on average, particularly on
macOS. This suggests that EfficientNet maintains both
low energy usage and quick responsiveness, while ViT’s
attention-based architecture introduces higher computational
overhead.

Figure 3 further highlights these trends using normalized
energy scores. EfficientNet consistently scores higher,
indicating that our normalization technique effectively
enables the benchmarking. Even when accounting for FLOPs
and hardware variability, EfficientNet remains more energy
efficient.

Figures 4 and 5 present the trade-off between accuracy
and total energy consumption. Despite neither model being
fine-tuned, EfficientNet demonstrates a more favourable
energy-to-accuracy ratio on both platforms. ViT consumes
more energy for only marginal improvements—or even lower
accuracy in some cases—making it less optimal in low-power
scenarios.

Taken together, these results reinforce the notion that model
architecture has a substantial impact on energy and latency.
EfficientNet emerges as the more sustainable and practical
choice for deployment in diverse environments, while ViT may
be justified in scenarios where transformer-based performance
is critical and energy is less constrained.

B. Limitations

Our implementation is an extension of the MLPerf Inference
repository, but it is entirely separate from MLCommons’
MLPerf Training benchmark1. For this reason, our
implementation is meant solely for inference tasks and
lacks the opportunity to work with models that still require
proper training. The implementations from the MLPerf
Training benchmark are measured by the time to train to a
defined quality target [18], while the inference benchmark
focuses on how efficiently the system can perform inference.
To properly compare models, it would also be necessary to
take into account the time it takes to train those models on the
inference data set, which was beyond the scope of this project.

Another important limitation is the lack of a warm-up phase
prior to energy measurement. In real-world deployment, ma-
chine learning systems often experience a warm-up period
during which hardware resources ramp up to stable operating
conditions [19]. During this phase, energy consumption can

1https://github.com/mlcommons/training

fluctuate significantly due to the cold-start of the hardware.
Since our benchmark begins measuring energy consumption
immediately with the first inference request, the results may
include consequences from cold-start overhead, such as un-
usually high power usage or slower inference times in the
first few iterations. This can lead to results that are not
representative of the actual energy consumptions, especially
for short runs or single-stream scenarios. Future iterations of
our benchmark could incorporate a defined warm-up period
to ensure more stable and realistic measurement conditions
[20]. This recommendation is consistent with best practices
observed in other studies like Wang et al. (2020)[21], which
emphasize the need for system stabilization before collecting
performance and energy data.

C. Threats to Validity

Our study considers three main types of threats to validity as
described by Cook and Campbell [22]: internal, external, and
construct validity.

Internal validity is threatened by the restricted set of hardware
platforms tested. While our benchmark is cross-platform by
design, actual results were gathered from only a few systems
due to time constraints. This impacts the generalizability of
our findings.

Construct validity could be influenced by potential inconsisten-
cies in power measurement tools (e.g., different sampling rates,
or metrics between CarbonTracker [23] and EnergyBridge
[24]). We selected the suitable measurements per system, but
discrepancies may still exist.

D. Justification and Mitigation

We can justify our choice of tools and normalization methods
based on simplicity, reproducibility, and compatibility across
systems. To mitigate variability across devices, we used con-
tainerized execution and normalization by FLOPs and per-
inference metrics. Time constraint was also a basis of our
choices.

VI. CONCLUSION

A. Future work

As mentioned in Section V, our current implementation
only made use of the MLPerf Inference benchmark. In the
future, an additional integration of the MLPerf Training
benchmark could be useful. This additional feature would
need a proper plan for integrating both repositories, but
the possible outcome could be a stronger benchmark that
measures energy consumption in an accurate way during
both the training and inference steps of a machine learning
pipeline. Ultimately, this would allow for a more proper
comparison between models.

One possible improvement for future iterations of this project
is the use of containerization. Due to time constraints, we were
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unable to package the benchmarking tool in a Docker con-
tainer. Providing a containerized version of the project would
greatly improve usability and reproducibility by allowing users
to easily run the benchmark on their own systems without
dealing with dependency or environment issues. Containeriza-
tion would also allow for more consistent benchmarking across
machines by minimizing configuration drift and make it easier
to deploy the tool in cloud or edge environments. For these
reasons, we believe this could be a strong feature to add in
the future.

B. Conclusion

This paper proposed a novel extension of the MLPerf Infer-
ence benchmark, designed to evaluate machine learning mod-
els in a machine-agnostic and energy-aware manner. While
traditional benchmarks often overlook hardware variability
and sustainability considerations, our approach emphasizes
reproducibility and energy efficiency across diverse computing
environments. This method allows for a simplified comparison
of different machine learning models by allowing the user
to upload their own models and datasets to execute the
benchmark on. Although other features could be implemented
in the future, this paper represents a step towards machine-
agnostic ML model comparison in the sustainable software
field.

APPENDIX

A. Link to repository

The source code from this paper can be found here. This
repository is a fork of the official MLCommons Inference
Benchmark repository and has been extended to include addi-
tional energy measurement and normalization functionality.
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