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1 Introduction

According to the United Nations Agenda of Sus-
tainable Development [1], a prosperous future
requires energy efficiency, sustainable consump-
tion, and, implicitly, the reduction of pollution.

Among the factors that exacerbate pollution
is the process of software development [2]. Given
the increased use of software in society, we intuit
that software development practices risk using in-
creasingly more energy. This fact sparked the
appearance of a Green Software movement, call-
ing for software development practices that mini-
mize carbon emissions [3, 4]. Therefore, software
engineers must become more mindful of the en-
ergy consumed by development pipelines. These
pipelines include a large variety of processes, one
of them being testing.

Writing test cases is a vital part of the de-
velopment process, as it ensures software relia-
bility and quality by minimizing program bugs.
Nonetheless, software engineers find writing tests
tedious, particularly for simple test assertions [5,
6]. Consequently, automated test generation
tools have been created to alleviate this issue [7].
By extension, minimizing the energy require-
ments of our development processes implies that
we must minimize the power usage of test gener-
ation tools as well.

Whilst there is significant research related to
Java test generators [7], increasingly more code-
bases use Python – in fact, it has become the
most popular programming language on GitHub
as of 2024 [8]. Despite this, there are significantly
fewer tools that automate the test case genera-

tion process in Python, particularly due to issues
arising from type inference [7]. A test generation
tool that aims to fill this gap is Pynguin [7].

However, we currently identify no research in-
vestigating Pynguin’s power usage. Moreover,
Python itself is less energy efficient due to being
an interpreted language [9], a fact which leads
us to assume that Pynguin might also be less
mindful of energy resources than its Java coun-
terparts. However, Python’s popularity makes it
all the more possible that test generation tools
such as Pynguin will gain more commercial use,
thus motivating us to investigate how well it cur-
rently fares when it comes to power usage.

In this report, we investigate Pynguin’s power
usage, providing usage guidelines to users who
aim to leverage this tool in a more energy-
conscious way. To do so, we run three of
the tool’s test generation algorithms, MIO[10],
DynaMOSA[11], and MOSA[12], on two different
seeds, namely 42 and 1337. We do this in multi-
ple iterations, providing power and test genera-
tion time averages for each algorithm-seed com-
bination.

To achieve our goal, we structure the report
as follows. First, we contextualize the tools that
we use and evaluate in section 2. In section 3,
we highlight other existing work in this domain,
further explaining the added value that our work
presents. Following this, we detail our experi-
mental setup in section 4. Having appropriately
set the foundation, we then showcase and inter-
pret our results in 5. Next, we discuss the im-
plications of said results in section 6. We ac-
knowledge the limitations that we faced due to
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time constraints under section 8. With this be-
ing said, section 9 points to future research that
can be done on this topic. Finally, we conclude
with some guidelines in section 10.

2 Background

2.1 Pynguin

The focus of this paper, Pynguin [7], is an au-
tomated unit test generation tool designed to
address the lack of such tools for dynamically
typed languages, as there have been several tools
such as Randoop [13] and EvoSuite [14], however,
their focus lies solely with Java, a statically typed
language. Pynguin, however, focuses on Python
whilst employing a similar search-based approach
for test generation as EvoSuite.

2.2 EnergiBridge & PyEnergiB-
ridge

EnergiBridge [15] is a tool designed to collect
resource usage data, allowing us to easily mon-
itor system power consumption for the dura-
tion of Pynguin’s test generation. However,
EnergiBridge does not natively integrate with
Python programs. PyEnergiBridge [16] provides
a Python wrapper for EnergiBridge, and allows
us to address this issue. As the goal of our re-
search is to evaluate the energy consumption of
Python test generation configurations, this en-
ables us to utilize EnergyBridge with improved
ease of integration.

2.3 Docker

Docker1 is a virtualization tool that allows us
to run our tests in a container, ensuring that
the tests are generated in an isolated environ-
ment. This prevents any unwanted access to the
broader filesystem that could affect generation or
power metrics. These unwanted accesses could
result in invalid energy metrics. Utilizing Docker
ensures reproducibility and minimizes the afore-
mentioned issues that could arise.

3 Relevant Literature

Much research has been done on the functional
aspects of automated test generation (e.g., cover-
age and performance), such as the original Pyn-
guin [17] and EvoSuite [14] papers. However,
there has been a significant lack of research re-
garding the power consumption of these auto-
mated test generation tools.

The only paper that we were able to find, at
the time of writing, was “On the energy consump-
tion of test generation” by Kifetew et al. [18],
which evaluates the energy consumption of Evo-
suite by considering factors such as Cyclomatic
Complexity (CC), test coverage, and the algo-
rithm used in EvoSuite’s search-based approach.
They determined that complex programs with
<100% coverage consumed the most power, while
programs with 100% coverage typically consumed
considerably less power, regardless of the com-
plexity. Interestingly, they also determined that
in simple programs with low CC, the search al-
gorithm used (e.g., Random, DynaMOSA, etc.)
had relatively little impact on the overall power
consumption.

Their findings highlight the need for further
research into power consumption for test gen-
eration tools, due to a strong focus on a single
testing tool for a single language. Our research
aims to build on this gap by investigating the
power consumption of a Pynguin for the current
most popular programming language, Python.
As Python is a dynamically typed language, this
adds insight to our findings.

4 Experimental Setup

To evaluate the power usage of automated test
generation, we used Pynguin across three differ-
ent configurations. These differ by the tool’s gen-
eration algorithm, namely DynaMOSA, MOSA,
or MIO. We chose to change these configurations
as we want to see if different generation methods
consume more power.

The projects we chose for our experiments
are taken from [17], which were selected from

1https://www.docker.com/
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the PyPI package index of Python projects, us-
ing the ‘typed‘ category such that projects use
type annotations. These were also selected such
that Pynguin can run on them, so for example,
projects with native-code library dependencies
were not selected. Out of all 10 different projects,
we chose 2 of them, namely codetiming and
docstring_parser. As these were the fastest
running programs for us, we selected them due
to time constraints.

While the dataset is not representative
enough for all types of Python software due to
our limitations, the 2 projects have different use
cases and sizes. Codetiming is a customizable
timer for Python code, with 2 modules and 145
lines of code, which is quite a small project. How-
ever, Docstring_parser, which is used to parse
Python code documentation, has 6 modules with
924 lines of code in total.

For each project and configuration, we ex-
ecuted Pynguin to generate unit tests and
recorded the power consumption using EnergiB-
ridge. This tool was used to measure the con-
sumption across the entire test generation pro-
cess, for each configuration on all the files. We
chose to focus on average power consumption
(Watts) rather than total energy consumption
(Joules) as we want to consider how much is con-
sumed per unit of time. For example, a configu-
ration might use less total energy because it fin-
ishes quickly, even if it uses a lot of power while
running. By looking at average power instead,
we can compare how demanding each configura-
tion is over time. This helps us compare the ef-
ficiency of different configurations in a more bal-
anced way.

For validity, each experiment was repeated
14 times, and the average was taken as the
final result. Between executions, we used
time.sleep(10) to prevent previous measure-
ments from affecting the current one. To account
for external conditions that change over time,
such as room temperature, we shuffle the order
of configurations, the order of projects per con-
figuration, and the order of modules per project.
With this, we aim to reduce the risk of biased re-
sults. We also ran the evaluation on a single de-
vice, with the following specifications: Apple M1

Pro chip, 10-core CPU with 8 performance cores
and 2 efficiency cores, 16-core GPU, 16-core Neu-
ral Engine, 200GB/s memory bandwidth. To re-
duce confounding variables, all experiments were
executed under the following zen conditions:

• all other applications closed

• adaptive screen brightness disabled

• screen saver disabled

• consistent screen brightness set

• Wi-Fi interface turned off

• Bluetooth and Airdrop disabled

• display sleep disabled.

5 Evaluation
Our results showcase slight differences between
algorithms in terms of power consumption. To
account for the different values per iteration, fig-
ure 1 illustrates the power consumption of algo-
rithms as box plots.

Herein, we identify that MIO requires the
most median power, and that this value is only
marginally affected by the random seed choice.
However, we note that MIO-42 has a bigger up-
per quartile, which suggests that this seed value
might lead to more variance in terms of power
consumption. In addition, both MIO-42 and -
1337 have outliers on the higher end of values, a
fact which, given the limited number of 14 itera-
tions, may suggest that the actual median power
consumption could increase after more iterations.

MOSA and DynaMOSA perform similarly in
terms of required power, with the mention that
DynaMOSA has slightly lower median power con-
sumption. Moreover, we notice the absence of
outliers, suggesting that the statistics might be
more reliable for these algorithms than for MIO.
Here, the seed choices do not appear to meaning-
fully impact overall power consumption, neither
in terms of variance nor median values.

The ANOVA results show that the choice of
algorithm and seed produces statistically signif-
icant differences (p < 0.001). Specifically, the
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ANOVA on power (Figure 5) shows F = 84.581
and a very small p-value, indicating that at least
one algorithm-seed combination differs meaning-
fully from the others in power used. Post-hoc
tests reveal consistent groupings in which MIO-
1337 and MIO-42 generally form a distinct clus-
ter with higher average power but lower execu-
tion times (thus lower total energy), while Dy-
naMOSA and MOSA variants cluster separately,
drawing less power at any moment but requiring
more time overall. These findings statistically
validate that the observed differences in energy
usage and performance across algorithms are un-
likely to be due to chance.

Figure 1: Power per algorithm

In addition to power-related statistics, one
should also consider the test generation duration
(Figure 2). Despite having the highest median
power, MIO had the lowest execution time, re-
quiring around 713–716 seconds. In terms of ac-
tually minimizing the total energy consumption,
this may mean that MIO might be a superior
choice to MOSA or DynaMOSA.

On the topic of time, we recall the experimen-
tal setup that Pynguin’s authors use [7]. They
limited the test generation time to 600 seconds,
which is above the time required for any of the
test generations to finish. Thus, considering a

time execution cap of 600 seconds, MOSA and
DynaMOSA might be better choices, as they re-
quire less power and, implicitly, less energy over
the same number of seconds.

Furthermore, it is important to consider the
coverage performance of each algorithm. To do
so, we point to the original experiments which
are run across multiple projects for 600 seconds
each, including those used for our experiment [7].
DynaMOSA performed best in terms of branch
coverage, followed by MIO and MOSA. However,
the differences themselves are negligible, with
the highest average branch coverage being 68.0%,
and the lowest, 67.0% [17]. Thus, there is no clear
best algorithm in terms of branch coverage.

We sum up the results section with three
main points. First, there are no significant differ-
ences in branch coverage performance across al-
gorithms. Secondly, MIO maximizes power con-
sumption. This contrasts with the third main
observation, which is that MIO may take less
time to finish execution (around 2 minutes, in
our case). However, this may not be relevant if a
developer chose to cap the test generation time.

This means that, sustainability-wise, MIO
may be the best option for larger projects and
no test generation time cap, as the algorithm has
the quickest execution time and implicitly con-
sumes the least energy. Assuming a time cap,
however, DynaMOSA or MOSA might be better
alternatives.

However, we elaborate in the discussion sec-
tion (see 6) that picking MIO may come at the
cost of decreased test quality, particularly be-
cause we identified unexpected behaviour when
it came to its test writing capabilities.
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Figure 2: Test generation time per algorithm

6 Discussion

In this section, we reflect on the results presented
above and interpret their implications. We pri-
marily focus on the power consumption results
(Figures 5, 8, 11, and 15), though we also try to
contextualize them using total energy consump-
tion (Figures 4, 7, 10, 14) and execution time
(Figures 6, 9, 12, 16).

A main observation is that MIO shows the
highest average power draw of about 13.3W (Fig-
ures 8 and 11) but also the shortest execu-
tion times of around 713–716s (Figures 9 and
12). In contrast, DynaMOSA and MOSA con-
sume less power on average of about 12.7–12.8W
but run substantially longer for about 879–940s.
MIO’s mutation-based search likely causes more
intense CPU utilization in shorter bursts, increas-
ing power draw. In other words, it is working
harder at any given moment, thus driving up the
wattage. It can be that MIO converges faster
than DynaMOSA and MOSA on our relatively
small or less complex modules we tested. Addi-
tionally, in some modules, MIO attempted mu-
tation testing but all mutants survived, and no
tests were written. The potential convergence
and no killed mutants can, as a result, shorten
overall runtime.

All three algorithms were run using two dif-
ferent seeds (42 and 1337). As seen in Figures 8,
7, and the ANOVA tables, seed changes do cause
slight shifts in the distributions, but the overall
ranking of the algorithms in terms of power and
energy does not fundamentally change. MIO’s

mutation-driven search may be more determin-
istic in how it explores mutations, so chang-
ing the seed does not drastically alter its short
search phases. DynaMOSA and MOSA are both
coverage-driven algorithms that rely more heav-
ily on random selection of test cases during their
search, so different seeds can more noticeably
shift the coverage search path. However, these
shifts did not overshadow the observed pattern
that MIO completes faster with higher power,
whereas DynaMOSA and MOSA run longer at
lower power.

Certain files triggered Pynguin messages that
there was no testable code. This typically arises
when a file only contains import statements, con-
stants, or empty class definitions or when the
file’s methods do not meet Pynguin’s criteria
(e.g., no public functions or typed signatures for
Pynguin to analyze). As a result, Pynguin (and
thus MIO, DynaMOSA, or MOSA) simply can-
not generate any tests. This lowers the total
number of testable units but does not necessar-
ily reflect a shortcoming of the algorithms, it is
rather a quirk of the code’s structure or the tool’s
heuristics for identifying testable functionality.

Therefore, we introduce the following sug-
gestions for developers who aim to use Pynguin
in a sustainable way. Firstly, they should cap
the test generation time similarly to the initial
study, which is 600 seconds. Assuming a rea-
sonable time cap, developers should then use ei-
ther MOSA or DynaMOSA, as they have a lower
power draw than MIO. However, if test genera-
tion time cannot be reduced, we suggest picking
MIO instead, as it might take less time to gener-
ate tests.

Figure 3: Guidelines for developers
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7 Limitations

Our study on the power consumption of test gen-
eration is subject to several limitations that may
affect the accuracy and generalizability of the
results. The first limitation was hardware con-
straints, as the experiments were conducted on a
personal computer. Additionally, we faced tech-
nical difficulties in the form of errors such as Pyn-
guin saying there was nothing to test, or modules
not being recognized, which further delayed data
collection.

The execution of the experiment took signifi-
cantly longer than anticipated due to the com-
plexity of the test generation process and the
need for repeated measurements. This limited
the number of configurations and projects we
could explore to only two, affecting the compre-
hensiveness of our findings.

Another effect of the long test generation du-
ration was our limitation of 14 iterations per con-
figuration. Although more iterations would have
been preferred, and would potentially have in-
creased accuracy, we unfortunately were unable
to do so.

The final effect of the time constraints was
our lack of consideration for branch coverage and
type annotations. Although this would allow us
to understand the trade-offs between the power
consumption and performance for the various al-
gorithms, we did not manage to include them in
our findings.

Our study relied on software-based energy
measurement tools, which can be inaccurate.
These tools are sensitive to noise from concur-
rent processes, making the results susceptible to
measurement errors.

To ensure isolation during test execution, we
ran the experiments inside Docker containers.
While this approach helped minimize interfer-
ence from other processes, it also introduced ad-
ditional CPU and memory overhead. The en-
ergy consumed by the container management it-
self could have affected the overall readings, mak-
ing it difficult to isolate the true energy costs of
test generation alone.

8 Threats to validity

8.1 Internal threats

As mentioned previously, due to time and tech-
nical constraints we were limited to only running
docstring_parser and codetiming_local, from the
8 total projects. This creates an internal threat
to the validity of our findings, as we were un-
able to account for the broad variety of use cases
which Pynguin discussed in their original paper.
As the projects were chosen due to their speed,
and not based on specific insights they provide,
our results may not be an adequate reflection of
the real-world power consumption of Pynguin.

To account for tail bias, we utilize
time.sleep(10). We aimed to ensure that there
was enough time between configuration runs and
avoid picking up any tail energy measurements.
As we simply did this on a time basis, however,
we did not verify if the processes fully concluded
in this time frame. As a result, we were unable
to ensure that our duration was long enough to
avoid tail bias.

Another crucial aspect that we were unable to
account for was the charging state of the device
while the tests were running. As the tests were
running overnight (as a result of the long gener-
ation durations), we were unable to monitor the
battery status throughout the experiment. Fluc-
tuations in the charging state could have had
unknown effects on our readings, which further
threatens the validity of our results.

8.2 External threats

A key external threat is the lack of results on
Windows, which may limit the completeness of
our results. Pynguin is not limited to a specific
operating system, which likely means the size of
the Windows user base is not insignificant. Our
lack of Windows results limits the insight into the
broader range of power consumption of Pynguin.
As Pynguin is not limited to a specific operat-
ing system, understanding the power consump-
tion across different operating systems, as well
as the relative power consumption between plat-
forms, would improve our understanding.
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9 Future Work

Expanding on the previously mentioned threats
to the project validity, verifying whether results
remain consistent across operating systems, and
running likewise tests on Windows is another as-
pect that could benefit from further research and
provide more context. Furthermore, controlling
conditions to a greater extent would likely also
ensure higher consistency, by reducing the num-
ber of outside variables that could affect the re-
sults. Similarly, a future study that monitors
background processes to more accurately track
and prevent tail bias affecting the results would
contribute to a much more accurate set of results,
and thus to a clearer picture of the problem at
hand.

As there were several aspects we were unable
to cover in our experiment, the first area of fu-
ture work could be to evaluate the power con-
sumption of the other projects discussed in the
original Pynguin paper [17], such as api_mid,
flutes_local, flutils_local, and pypara_local. As
mentioned, due to time constraints, we only ran
two projects, which is not indicative of the com-
plete picture.

Furthermore, there were additional al-
gorithms that could similarly be evalu-
ated as well. Alongside DynaMOSA, MIO,
and MOSA, Pynguin also offers RAN-
DOM, RANDOM_TEST_CASE_SEARCH,
RANDOM_TEST_SUITE_SEARCH, and
WHOLE_SUITE as algorithm options. As-
sessing the remaining algorithm options would
provide additional context to the problem.

The paper regarding EvoSuite’s power con-
sumption [18] took Cyclomatic Complexity(CC)
into account as well. Their findings concluded a
strong correlation between the CC of a program
and its power consumption. Expanding on our
research to investigate if Python programs are
affected similarly would provide much merit.

Finally a future study considering branch cov-
erage and the evaluation of the generated tests
themselves would provide merit to anyone intend-
ing to follow the proposed guidelines, and allow
them to be more informed of the benefits and
tradeoffs of the various algorithms.

10 Conclusion
This study investigated the power consumption
of Pynguin’s test generation algorithms, focusing
on DynaMOSA, MOSA, and MIO. Our experi-
ments revealed that MIO consumed the least to-
tal energy, despite its higher instantaneous power
draw, due to its shorter execution time. Our
findings reveal an important trade-off between
instantaneous power consumption and execution
time, underscoring that energy efficiency in test
generation cannot be assessed through power
metrics alone but must account for the inter-
play between power, time, and algorithmic ef-
ficiency. Our results emphasize the importance
of considering power consumption as a metric
in automated test generation. While functional
metrics like coverage remain important, energy
efficiency emerges as a complementary criterion
that could influence tool design and configura-
tion choices in the future. However, limita-
tions such as small sample sizes and hardware
variability warrant caution in generalizing these
findings. Future work should expand the eval-
uation to more projects, additional algorithms,
and cross-platform environments, while integrat-
ing coverage and mutation score analyses. Ulti-
mately, as the demand for sustainable software
practices grows, understanding the energy foot-
print of tools like Pynguin becomes essential.

11 Reproducibility
The reproduction package is available at https:
//github.com/victorhornet/sse-testgen,
along with the setup instructions. We recom-
mend using uv for the environment setup and
running the experiment.
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A Appendix: Additional Figures

Figure 4: ANOVA Joules
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Figure 5: ANOVA Power
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Figure 6: ANOVA Time
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Figure 7: Boxplot Joules
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Figure 8: Boxplot Power
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Figure 9: Boxplot Time
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Figure 10: Density Plot - Joules
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Figure 11: Density Plot - Power
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Figure 12: Density Plot - Time
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Figure 13: Descriptive Statistics

Figure 14: Raincloud Plot - Joules
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Figure 15: Raincloud Plot - Power

Figure 16: Raincloud Plot - Time
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Figure 17: General Statistics
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