
GradlEnergi: Raising awareness about local build
pipeline energy consumption
Gijs Margadant

Delft University of Technology
Delft, Netherlands

g.e.margadant@student.tudelft.nl

Jamila Seyidova
Delft University of Technology

Delft, Netherlands
j.c.q.seyidova@student.tudelft.nl

Michael Chan
Delft University of Technology

Delft, Netherlands
j.m.chan@student.tudelft.nl

Roberto Negro
Delft University of Technology

Delft, Netherlands
r.negro@student.tudelft.nl

Abstract—The growing emphasis on sustainable software engi-
neering has largely overlooked the energy consumption associated
with developers’ local build processes. This paper introduces
GradlEnergy, a cross-platform tool designed to measure and
visualize the energy usage of Gradle build pipelines. By com-
bining hardware-level energy measurements with an intuitive
graphical user interface, the tool enables developers to design
repeatable experiments, analyze energy consumption at the level
of individual build tasks, and compare results across systems
and configurations. A case study using the JUnit5 project
demonstrates the tool’s effectiveness and highlights practical
challenges such as task redundancy and measurement accuracy.
GradlEnergy is publicly available and extensible, contributing to
the broader field of Green ICT by addressing critical gaps in
energy transparency and developer empowerment.

I. INTRODUCTION

The past decade has witnessed a growing interest in green
software engineering. While much of the focus has been on
optimizing data centers, mobile devices, and AI model training
[1], the day-to-day activities of software developers remain
largely overlooked in sustainability discussions [2]. To fully
realize energy efficiency across the software life cycle, a
more holistic approach is required — one that extends beyond
hardware to include software development practices.

Automated build pipelines, a fundamental component of
modern software development [3], represent a significant yet
often hidden source of energy consumption [4]. In modern
development environments, builds are triggered frequently,
such as with every commit, pull request, or merge. These
processes are typically executed in continuous integration (CI)
environments like GitHub Actions, GitLab CI/CD, or Jenkins,
often hosted in the cloud. As the frequency of these builds
increases, their energy demands grow, yet the environmen-
tal impact remains largely obscured from developers and
organizations. This abstraction makes it difficult to connect
development practices with their real-world energy costs.

The lack of visibility into energy consumption in build pro-
cesses is a major barrier to improvement. Most developers are
unaware of the energy costs associated with their workflows

and lack the tools to measure and optimize these impacts.
Studies show that a significant portion of developers have little
to no understanding of energy consumption in software appli-
cations, with only a small fraction taking power consumption
into account during development [5]. This gap in knowledge
highlights the importance of promoting greater awareness and
providing accessible tools to empower developers to make
informed decisions on build configuration, frequency, and re-
source management. This issue is also reflected in the broader
Green ICT research field, where “people awareness”—despite
being frequently discussed—has not been sufficiently inte-
grated into existing Green ICT frameworks [6]. Our tool aims
to bridge this gap by making energy consumption more visible
and actionable for developers, fostering a shift toward more
sustainable practices in software development.

The high frequency of builds across industries means that
even small inefficiencies can translate into considerable envi-
ronmental costs. Without proper tools to monitor and analyze
the energy consumption of build pipelines, developers lack
the necessary insights to minimize their carbon footprint. This
is further compounded by the fact that even when energy
concerns are recognized, programmers are often unsure of how
to effectively reduce consumption. Research shows that despite
acknowledging energy efficiency as a priority, most developers
lack the detailed knowledge or metrics to make meaningful
adjustments [5]. This recurring issue in Green ICT research
has been identified as a lack of metrics and standards for
measuring energy efficiency [6]—a gap that our tool directly
addresses by providing developers with a practical way to
measure and compare the energy consumption of their builds.

To address this gap, we propose a platform-independent tool
that measures and visualizes the energy consumption of Gradle
builds. Through a Graphical User Interface (GUI), developers
can design and conduct experiments to measure energy usage
at various stages of the build process. Additionally, the tool
enables visualization and comparison of energy consumption
across different configurations and devices, fostering better
decision-making and encouraging the adoption of energy-

efficient practices.
By providing insights into the energy cost of builds, our

approach aims to raise awareness among developers, enabling
them to make more sustainable choices and ultimately con-
tributing to a more energy-efficient software development
ecosystem. In doing so, we contribute to the growing field of
Green ICT research and help fill the critical gaps in awareness
and measurement that hinder the industry’s shift toward more
sustainable software engineering practices[6].

The remainder of this paper is structured as follows. Section
II introduces our tool and outlines its key features. Section
III presents a case study that illustrates the practical utility
of the tool, while section IV discusses the implications and
limitations of the project. We then review the related work in
Section V, before concluding in Section VI with a summary
of our findings and directions for future work.

II. THE TOOL

The motivation behind our tool is to raise developer aware-
ness about the energy consumption of build pipelines. To that
end, our solution is designed to support structured experimen-
tation, enabling developers to measure energy usage at each
stage of the build process.

We identify three key goals: i) Enable developers to design
and set up easily repeatable experiments; ii) Provide a way
to execute these experiments reliably; iii) Offer intuitive vi-
sualizations to compare and analyze results across different
systems and build configurations.

In addition, we established several requirements. First, the
system must be compatible with a wide range of hardware and
operating systems - including macOS, Linux and Windows
running on Intel, AMD or Apple Silicon (M1) processors.
Second, it must feature a GUI that allows developers to
explore and interpret energy usage data. Lastly, while our
current implementation focuses on Gradle, the design should
be openly accessible and extensible in order to support other
build tools in the future.

To realize these goals, we built a tool that combines a frame-
work to setup experiments with an interface for analysis. In the
remainder of this section, we first describe the methodology
for conducting energy measurements, followed by an overview
of the GUI.

A. Experiment Methodology

Accurately measuring of energy consumption is inherently
challenging, as computers often run multiple background
processes, making it difficult to attribute energy usage to a
specific software task. While software-based estimators1 exist,
they typically rely on assumptions about the underlying hard-
ware, limiting their applicability across platforms. Moreover,
tracking process scheduling at a fine-grained level introduces
overhead — which itself consumes energy.

To ensure portability and reduce measurement bias, our
approach relies on hardware-level energy measurements. Al-
though these readings do not isolate the energy usage of

1https://github.com/marmelab/greenframe-cli

the build process alone, they offer a consistent baseline for
comparing experiments across configurations and systems. The
accuracy of such measurements can be improved by following
a set of best practices, which our tool supports and encourages.

a) Minimizing background interference: Reducing back-
ground activity is crucial. We provide guidance on how to
limit external processes — such as unplugging peripherals,
disabling wireless connections, and closing unnecessary ap-
plications — to ensure more stable and representative mea-
surements.

b) Repetition and averaging: Experiments should be
repeated multiple times (e.g., 30 times) to reduce variance,
allow for statistical analysis, and mitigate outliers. Averaging
results across runs helps smooth out random fluctuations in
background energy usage. To ensure consistency, cached build
results are cleared after each run so that all tasks are re-
executed from scratch.

c) Tail energy and resting phases: Another challenge is
the influence of tail energy: energy consumed after a task
finishes but still attributable to it. To prevent tail consumption
of one task from influencing the measurements of another,
there should be a resting phase (e.g., 60 seconds) in between
tasks.

d) Time-based bias and external factors: Environment
conditions, such as ambient temperature, may influence energy
readings over time. Ideally, tasks across repetitions would be
executed in a random order to mitigate this effect. However,
due to the stateful nature of build pipelines - with intermediate
cashes and dependencies - shuffling is not feasible in most
cases. That said, we argue that if external factors significantly
impact energy consumption, it is beneficial for developers to
become aware of them. To mitigate temperature-related vari-
ance, we do provide a warm-up procedure to bring hardware
up to temperature before experiments begin.

We recognize that these best practices may limit developer’s
ability to use their machine during experimentation. To reduce
this burden, or tool automates the full experimental process,
allowing runs to be scheduled during idle times. Additionally,
none of the recommendations above are enforced. Developers
remain free to run a single build or experiment under less
controlled conditions if desired.

B. Measurement Methodology

Energy measurements are collected using EnergiBridge [7],
a cross-platform energy measurement tool that supports ma-
cOS, Linux, and Windows across Intel, AMD, and Apple
Silicon processors. It is designed to collect energy consump-
tion data on the hardware level and output it to a CSV file.
Currently, the only measurement consistently available across
platforms is CPU energy consumption, which we use as the
basis for our comparisons.

To enable fine-grained energy profiling of individual build
tasks, our tool accepts a Gradle command through the GUI. In-
ternally, the command is first executed with the --dry-run
flag to retrieve the list of tasks that would be triggered. This

2

https://github.com/marmelab/greenframe-cli

list is then presented to the user, who can selectively enable
or disable specific tasks for the experiment.

Once the task selection is finalized, the tool sequentially
executes each task in isolation by wrapping it in a separate En-
ergiBridge measurement command. This approach guarantees
that energy consumption is measured independently for each
task, reducing interference and ensuring clearer attribution of
energy costs to individual build phases.

We provide the user with the option to conduct an experi-
ment measuring idle energy consumption. It serves as a base-
line of the energy consumed by the system and can be used
to obtain more reliable estimates of the actual consumption of
the build process. Using this correction, experiment results can
more easily be compared across systems. The system’s energy
consumption is determined by first computing the systems
power consumption during the idle phase and integrating this
over the time it took for the task to complete. For example,
if the system consumed 10 Watts during the idle phase and
the task executed in 2.5 seconds, then 25 Joules of energy ar
attributable to the system and will be subtracted from the total
amount of energy consumed.

C. Graphical User Interface

Our tool provides a GUI that supports developers in setting
up, running, and analyzing experiments. It is implemented in
Python using the tkinter library2, which ensures compatibility
with all supported platforms. The GUI is structured into three
views:

a) Experiment setup: As shown in Figure 1, this view
allows users to configure and launch experiments. All the pa-
rameters mentioned in Section II-A can be specified here. Each
setting includes a tooltip with recommended best practices,
accessible by clicking on the adjacent question mark icons.
Additionally, users can connect to EnergiBridge and select the
target Gradle project folder from this view.

b) Single experiment analysis: Figure 2 illustrates the
analysis page for individual experiments. Here, the energy
consumption of each task within the build process is visualized
using a pie chart. Users can choose which metric to visualize
(e.g., CPU energy or RAM energy), enabling a quick and
intuitive understanding of where energy is being consumed
during a specific build.

c) Multiple experiment analysis: Figure 3 displays the
comparison view for multiple experiments. Energy usage for
tasks across different experimental runs is presented in a bar
chart. Users can select a subset of experiments to include in
the visualization and choose which metric to compare. This
functionality is particularly useful for evaluating the impact
of configuration changes, hardware differences, or caching
strategies on energy consumption.

D. Public Availability and Extensibility

The tool is publicly available on GitHub3, along with
detailed setup instructions in the README file. The repository

2https://docs.python.org/3/library/tkinter.html
3https://github.com/JamilaSeyidova/sse-g22-p2/tree/main

also includes a dedicated section titled How to Use the Tool,
which explains how to properly configure and run experiments
through the graphical interface. For those interested in
contributing or extending the tool, the execution logic of the
experiment is located in logic/experiment_setup.py,
while the user interface logic is split be-
tween GUI/views/settings_view.py and
GUI/views/statistics/statistics_view.py.

III. CASE STUDY

To evaluate the effectiveness and reliability of our tool in
a real-world setting, we conduct a case study. Unfortunately,
many of the repositories that integrated the Gradle build tool
could not be build locally on our systems, due to failures
in the build process. We took, among others, the repositories
mentioned in [4] and checked out the commits they mentioned.
For example, the Junit54 repository fails because statical
analysis tools detect the usage of http addresses where https
should be used. As a result, we are unfortunately not able to
compare our measurements with the ones they obtained.

Instead, we will verify our measurement methodology of
manually splitting up tasks using Gradle’s CLI and running
them to obtain detailed energy measurements. First, we will
discuss our experiment setup and, subsequently, we present
the results.

A. Experiment setup

We build the junit-jupiter-engine5 sub-project from Junit5
in two ways. First, we build it using the high-level gradle
build command by selecting the :junit-jupiter-engine:build
task in the experiment setup screen (Figure 1). Second, we
use the Task Tree6 plugin to extract all the sub-tasks on
which the build command depends and select all sub-tasks
in the first 3 layers of the tree. Below, the partial task tree
is listed, from which :junit-jupiter-engine:build, :junit-jupiter-
engine:assemble, and :junit-jupiter-engine:jar are included in
the task selection as they belong to the first 3 layers. The sub-
tasks lower in the tree are not selected. Using this procedure,
we selected 13 sub-tasks in total.

:junit-jupiter-engine:build
+--- :junit-jupiter-engine:assemble
| +--- :junit-jupiter-engine:jar
| | +--- :junit-jupiter-api:jar
| | | +--- :junit-jupiter-api:allM...
| | | | \--- :junit-jupiter-api...
| | | | +--- :junit-jupite...
| | | | | +--- :junit-j...
| | | | | | +--- :ju...
| | | | | | +--- :ju...
| | | | | | \--- :ju...

We set the experiments up as follows:
• Idle energy baseline: A 60-second idle period is

recorded before an experimental run to estimate back-
ground energy consumption. This idle energy is later

4https://github.com/junit-team/junit5
5Commit: 96daa92
6https://github.com/dorongold/gradle-task-tree

3

https://docs.python.org/3/library/tkinter.html
https://github.com/JamilaSeyidova/sse-g22-p2/tree/main
https://github.com/junit-team/junit5
https://github.com/dorongold/gradle-task-tree

Fig. 1: Experiment setup page

subtracted from the total to isolate the energy cost of
the build task.

• Warm-up phase: Prior to the start of an experimental
session, a 5-minute warm-up is conducted by executing
a CPU-intensive task (computing a large Fibonacci se-
quence) to bring the system to a stable temperature and
power state.

• Repetitions: Each experiment is repeated 30 times to
enable averaging and statistical analysis. Build caches are
cleared between runs to ensure that tasks are re-executed
consistently.

• Timeouts between tasks: A 30-second cooldown phase
is inserted between each task to allow the system to
prevent tail energy effects from skewing results.

• Timeouts between build repetitions: When measuring
multiple iterations sequentially, a 30-second timeout is
introduced between build executions to isolate each rep-
etition in a consistent way.

• Zen mode: to reduce background interference, we dis-
connected all peripheral devices, closes unnecessary ap-
plications, connected the laptop to the wall outlet, and
put it in airplane mode. In order to run the experiment
without internet connection, we first did a full build of
the repository in order to have all external dependencies
downloaded and cashed. We would then run gradle

clean to clean the build output.
• System specifications: the experiments were conducted

on an Acer laptop with the following hardware specifica-
tions:
– Series: Aspire 5 (A515-54G-59MW)
– CPU: Intel i5-10210U @ 1.60 GHz
– RAM: 16GB DDR4 @ 2400 MHz
– OS: Windows 11, v 24H2
– Screen resolution: 1920 x 1080

A limitation emerged from the use of EnergiBridge as the
measurement backend. During testing, we encountered a bug
related to duration subtraction overflow, which occurred under
certain timing conditions and could compromise measurement
accuracy. This issue is documented in EnergiBridge issue #20.
We resolved it by patching the library in a forked version used
throughout our experiments. While this fix ensured stability,
it introduces a dependency on a modified version, which
may affect reproducibility or portability unless the patch is
integrated upstream.

B. Results

Figure 4 illustrates the results of our experiment. The blue
bars correspond to the sub-tasks that are executed, while the
orange bar depicts the energy consumed by the single build

4

https://github.com/tdurieux/EnergiBridge/issues/20

Fig. 2: Single experiment analysis page

Fig. 3: Multiple experiment analysis page

5

command. The tasks are executed in the order shown at the
horizontal axes from left to right.

The total amount of energy consumed during both experi-
ments differs substantially. Without any sub-tasks selected, the
build consumed 145.25 Joules, whereas 1130.89 Joules are
consumed with sub-tasks selected. On average, the sub-task
experiment took 67.12 seconds to complete, whereas the other
experiment completed in 7.04 seconds. The jar task consumes
almost twice as much energy as the other sub-tasks that are
part of the pipeline. This is the result of shared dependencies,
which can also be observed from the full task tree, that are
cashed once successfully executed during the jar task. Hence,
it performs some of the work of the other tasks as well.

The energy consumed by the experiment without sub-tasks
is slightly less than the :junit-jupiter-engine:jar task. This
is remarkable, since that task is executed by :junit-jupiter-
engine:build implicitly. The gray bars represent the 95% con-
fidence intervals around the measurements and are shown in
Table I for the aforementioned tasks. According to the Shapiro-
Wilk test, our data was not normally distributed because of
heavy right-tails. This remained the case, even after removing
outliers more than 3 standard deviations away from the mean.
Hence, a bootstrap approach using 1000 samples was used to
generate the confidence intervals in a non-parametric way.

Task CI Lower Bound CI Upper Bound

:junit-jupiter-engine:jar 147.29 157.64
:junit-jupiter-engine:build 137.85 150.94

TABLE I: 95% confidence intervals for CPU energy consump-
tion across different tasks.

As shown in Table I, the difference in energy consumption
between the jar and build tasks is not significant. Since both
experiments were conducted under the same conditions (e.g.,
no cache cleaning between tasks, only after the entire pipeline
finished), we believe the difference is unlikely to be the
result of different setups. Table II shows how many tasks are
executed for eacy command, as printed out by gradle. We see
that for the sub-tasks, a total of 58 tasks are executed, while
only 22 were for the full build command. Moreover, even tasks
that performed (almost) nothing (e.g., checkstyleMain), still
took 3.72 second to execute. Hence, we think the overhead of
running individual Gradle tasks causes this the difference in
total energy consumed between both experiments.

IV. LIMITATIONS AND THREATS TO VALIDITY

While our tool provides insights into the energy consump-
tion of Gradle build processes, there are several limitations
and potential threats to the validity. These issues primarily
stem from the inherent complexity of build systems and
the challenges of precise energy measurement on commodity
hardware. In this section, we discuss the main limitations
encountered during the development and evaluation of our
tool.

Task Executed Duration (s)

jar 10 8.18
javadocJar 1 6.20
sourcesJar 1 3.72
assemble 4 4.93
checkstyleMain 0 3.72
checkstyleTest 4 4.95
checkstyleTestFixtures 4 4.96
spotlessCheck 5 4.50
test 5 4.99
validateNativeImageProperties 5 4.88
verifyOSGi 7 5.68
check 6 5.17
build 6 5.25
:junit-jupiter-engine:build 22 7.04

TABLE II: Number of tasks executed per command and
execution time.

a) Gradle Task Redundancy in Dry-Run Output: When
using gradle build --dry-run to identify tasks for
measurement, a limitation arises from task composition and
nesting. Many Gradle tasks invoke others internally—for ex-
ample, a higher-level task may implicitly trigger multiple sub-
tasks. As a result, naı̈vely executing all tasks listed in a dry-run
can lead to redundant executions, inflating the total energy
consumption attributed to the build. This challenges efforts
to isolate and compare the energy cost of individual tasks
accurately and suggests a need for improved task resolution
logic in future versions of the tool. To overcome the issue, we
have integrated an additional Gradle plugin in the monitored
repositories that exposed the full dependency tree of the tasks.
By analyzing this tree, the user can easily identify a subset of
high-level tasks that minimizes redundancy and overlap.

b) Gradle Task Overhead: We observed considerable
overhead when executing individual Gradle tasks separately.
This overhead affects the accuracy of the energy estimates, as
the energy consumed by Gradle’s task orchestration is non-
negligible when tasks are run in isolation. Circumventing this
issue remains an open challenge. One potential solution could
involve interacting with Gradle through its API, allowing finer
control over task execution with reduced overhead. Moreover,
this phenomenon may not be unique to Gradle. Other build
systems might exhibit similar behavior, making this an open
challenge in general.

c) Energy Measurement Frequency: Finally, EnergiB-
ridge, the energy measurement backend used in our tool, is
limited to a maximum sampling frequency of 5 measurements
per second. Consequently, tasks lasting less than a half are
typically captured by only a few measurements. If resource
competition delays sampling, the number of measurements can
be even lower. This limitation reduces the granularity at which
the energy consumption of short-lived tasks can be profiled,
potentially obscuring finer variations in energy usage.

V. BACKGROUND AND RELATED WORK

There are several tools and studies that focus on measuring
the energy consumption of build pipelines.

6

:ju
nit

-ju
pit

er-
en

gin
e:j

ar

:ju
nit

-ju
pit

er-
en

gin
e:j

av
ad

oc
Ja

r

:ju
nit

-ju
pit

er-
en

gin
e:s

ou
rce

sJ
ar

:ju
nit

-ju
pit

er-
en

gin
e:a

ss
em

ble

:ju
nit

-ju
pit

er-
en

gin
e:c

he
ck

sty
leM

ain

:ju
nit

-ju
pit

er-
en

gin
e:c

he
ck

sty
leT

es
t

:ju
nit

-ju
pit

er-
en

gin
e:c

he
ck

sty
leT

es
tFixt

ure
s

:ju
nit

-ju
pit

er-
en

gin
e:s

po
tle

ss
Che

ck

:ju
nit

-ju
pit

er-
en

gin
e:t

es
t

:ju
nit

-ju
pit

er-
en

gin
e:v

ali
da

teN
ati

ve
Im

ag
eP

rop
ert

ies

:ju
nit

-ju
pit

er-
en

gin
e:v

eri
fyO

SGi

:ju
nit

-ju
pit

er-
en

gin
e:c

he
ck

:ju
nit

-ju
pit

er-
en

gin
e:b

uil
d

Task

0

20

40

60

80

100

120

140

160
C

PU
 E

ne
rg

y
(J

ou
le

s)

Experiment
Sub-tasks selected Sub-tasks deselected

Fig. 4: Energy consumed per (sub-)task, system energy subtracted.

Recently, Limbrunner [8] proposed a framework for mea-
suring the energy consumption of CI/CD pipelines in a cloud
environment. Since cloud environments often run builds on vir-
tual machines, they usually do not provide access to hardware-
level metrics. Because of this, hardware-based methods like
RAPL cannot be used. Instead, the framework uses software
metrics that estimate energy consumption based on resource
allocation. There are two downsides to this approach. First,
these estimates rely on assumptions about the actual energy
use of the hardware, which might not always be correct.
Second, the framework is designed for cloud systems where
resources are shared, making it difficult to run repeatable
experiments.

Another tool is the Gradle Energy Consumption Plugin7,
which measures the energy consumption of the Gradle build
process. It uses RAPL for its measurements and requires
minimal setup to get started. However, this limits the use of
the plugin to systems with processors that support RAPL, such
as most modern Intel and AMD CPUs. Another limitation is
that the plugin only reports energy consumption for the entire
build process, which makes it less useful for detailed analysis
of individual build steps.

7https://github.com/eskatos/gradle-energy-consumption-plugin

EnergiBridge by Sallou et al. [9] is a cross-platform energy
measurement tool that supports Linux, Windows, and MacOS,
as well as a wide range of CPU architectures, including
Intel, AMD, and Apple M1. EnergiBridge aims to make
energy measurements more accessible by providing a simple
and unified interface that works across different hardware
and operating systems. It collects energy data by using low-
level system calls, such as reading CPU registers or using
the System Management Controller (SMC) on Mac systems.
One of its key advantages is that it offers broader compat-
ibility. EnergiBridge outputs detailed CSV files with energy
measurements over time, which makes it suitable for more
detailed analysis of energy consumption patterns. The tool has
been designed with controlled experiments in mind, making
it valuable for researchers, practitioners, and educational pur-
poses. EnergiBridge is available as an open-source project on
GitHub8.

In addition to tools, there is also research that looks at
the bigger picture of energy use in software development.
Zaidman et al. [4] carried out an exploratory study on the
energy consumption of continuous integration and testing in
open-source Java projects. They used direct hardware-level

8https://github.com/tdurieux/EnergiBridge

7

https://github.com/eskatos/gradle-energy-consumption-plugin
https://github.com/tdurieux/EnergiBridge

measurements with USB-C power meters on two platforms:
a Raspberry Pi 4 with a Broadcom Cortex-A72 CPU, and
a Minisforum MiniPC with an AMD Ryzen 7 CPU. Their
results show clear differences in energy consumption between
projects and illustrate how the frequency of builds contributes
to the total yearly energy usage. For example, the Elasticsearch
project alone used approximately 161 kWh in 2022, which is
almost 10% of the annual electricity use of an average EU
household. This study shows that there is growing interest
in understanding the energy impact of common software
development tasks and that there is a need to raise awareness
among developers.

Together, these tools and studies show that there is in-
creasing attention to the use of energy in software devel-
opment. At the same time, they also show that there are
still challenges in getting accurate, repeatable, and detailed
energy measurements. This motivates our work, which aims
to improve measurement accuracy and provide more detailed
insights into the energy use of build pipelines.

VI. CONCLUSION

This project introduced GradlEnergi, a cross-platform tool
designed to bring visibility into the energy consumption of
local software build processes. By integrating EnergiBridge
with the Gradle build system commands and providing a
graphical interface for designing and analyzing experiments,
the tool empowers developers to make more informed, energy-
conscious decisions. The case study discussed the application
in practice, providing insight into the tool’s functionality as
well as the challenges associated with using the tool.

Several directions for improvement have also emerged.
While our current implementation focuses on Gradle, the
underlying design is flexible and can be extended to support
other build systems in the future. First, reducing the over-
head introduced when measuring individual tasks and better
attributing the energy usage of subtasks to their parent tasks
would make the results more precise. Second, adding more
analytical power with richer statistics and metrics would open
the door for more insightful patterns in energy use. Third,
adding RAM consumption in addition to CPU would enable
more inclusive profiling. And lastly, enhancing the usability
and visual presentation of the interface would make the tool
even easier to use.

REFERENCES

[1] I. Manotas, C. Bird, R. Zhang, et al., “An empirical
study of practitioners’ perspectives on green software
engineering,” in Proceedings of the 38th international
conference on software engineering, 2016, pp. 237–248.

[2] B. C. Mourão, L. Karita, and I. do Carmo Machado,
“Green and sustainable software engineering-a system-
atic mapping study,” in Proceedings of the XVII Brazilian
Symposium on Software Quality, 2018, pp. 121–130.

[3] M. Beller, G. Gousios, and A. Zaidman, “Oops, my
tests broke the build: An explorative analysis of travis
ci with github,” in 2017 IEEE/ACM 14th International
conference on mining software repositories (MSR), IEEE,
2017, pp. 356–367.

[4] A. Zaidman, “An inconvenient truth in software engi-
neering? the environmental impact of testing open source
java projects,” in Proceedings of the 5th ACM/IEEE
International Conference on Automation of Software Test
(AST 2024), 2024, pp. 214–218.

[5] C. Pang, A. Hindle, B. Adams, and A. E. Hassan,
“What do programmers know about the energy consump-
tion of software?,” Jul. 2015. DOI: 10 . 7287 / PEERJ .
PREPRINTS.886.

[6] R. Verdecchia, F. Ricchiuti, A. Hankel, P. Lago, and
G. Procaccianti, “Green ict research and challenges,”
English, in Advances and New Trends in Environmental
Informatics, V. Wohlgemuth, F. Fuchs-Kittowski, and
J. Wittmann, Eds., ser. Progress in IS, EnviroInfo 2016
; Conference date: 14-09-2016 Through 16-09-2016,
Springer, 2017, pp. 37–48, ISBN: 9783319447100. DOI:
10.1007/978-3-319-44711-7 4.

[7] J. Sallou, L. Cruz, and T. Durieux, Energibridge:
Empowering software sustainability through cross-
platform energy measurement, 2023. arXiv: 2312.13897
[cs.SE].

[8] N. Limbrunner, Dynamic macro to micro scale calcula-
tion of energy consumption in ci/cd pipelines, 2023.

[9] J. Sallou, L. Cruz, and T. Durieux, “Energibridge: Em-
powering software sustainability through cross-platform
energy measurement,” arXiv preprint arXiv:2312.13897,
2023.

8

https://doi.org/10.7287/PEERJ.PREPRINTS.886
https://doi.org/10.7287/PEERJ.PREPRINTS.886
https://doi.org/10.1007/978-3-319-44711-7_4
https://arxiv.org/abs/2312.13897
https://arxiv.org/abs/2312.13897

	Introduction
	The Tool
	Experiment Methodology
	Measurement Methodology
	Graphical User Interface
	Public Availability and Extensibility

	Case Study
	Experiment setup
	Results

	Limitations and Threats to Validity
	Background and Related Work
	Conclusion

