
HowSUS: A Sustainability Scoring Framework for Open-Source

Libraries

Seyidali Bulut, Johan van den Berg, Michal Kuchar, Artin Sanaye

March 2025

1 Introduction

In 2024 the Nutri-Score was introduced in the
Netherlands [15]. Food producers can voluntarily
put this on their packaging to help the consumer
make the healthier choice. This idea of influencing
consumer behaviour based on a label can be ex-
tended to software libraries and their sustainabil-
ity. The need for guiding users to more sustainable
libraries is becoming more and more evident. In
2018 a study found that if no improvements were
made, the share of global emissions from the ICT
industry would increase to 14% in 2040 [5]. This
was so even before the recent explosive growth of
AI-related computing. The energy consumption of
generating one image using GenAI is the same as
that of fully charging your phone [10]. The in-
creasing need for attention to sustainable software
prompted our research into applying Nutri-Scores
to software libraries.

Previous research has been conducted into mea-
suring the sustainability of software and how to
improve such systems in Noman et al. [12]. Ad-
ditionally, proposals exist for a sustainability la-
bel for software, such as in Deneckère and Rubio
[7] and energy labelling for specific tasks such as
machine learning models [8]. However, a general-
isation of these proposals to all types of software
libraries is missing. We aim to close this research
gap by proposing a generally applicable Nutri-Score
for software libraries.

Section 2 will discuss the current literature on
Nutri-Scores and sustainability metrics. In section
3 the research methodology will be outlined. The
results will be discussed in section 4. Finally the
limitations, extensions and conclusions will be dis-
cussed in section 6, 7 and 8.

2 Related Work

This section will provide an overview of the current
literature on Nutri-Score and software sustainabil-
ity metrics.

2.1 Nutri-Score

In this section we look into the details of Nutri-
Score and explain what it resembles.

Nutri-Score is a nutritional label that is designed
to provide easy understanding to customers about
the nutritional quality of food products. Nutri-
Score is developed by coordination of several Eu-
ropean countries and it ranges from A (green) to E
(red), with A indicating the healthiest options and
E indicating the least healthy [9].

2.1.1 Scoring System

The Nutri-Score system assigns scores to food prod-
ucts based on their nutritional content, considering
both negative and positive factors. The scoring is
determined by subtracting the total positive points
from the total negative points, which are calculated
per 100 grams of the product.

Negative points are assigned for nutrients that
should be limited in the diet:

• Energy content: High energy density per 100g
or 100ml

• Saturated Fat: High levels of saturated fatty
acids.

• Total Sugar: High sugar content.

• Salt Level: High sodium content.

Positive points are awarded for nutrients that are
beneficial:

1



• Fruits, Vegetables, Legumes, and Nuts: High
content of these promotes a better score

• Fiber Content: High fiber levels contribute
positively.

• Protein Content: High protein levels are also
beneficial.

The final score ranges from -15 to +40, with
lower scores indicating better nutritional quality.
Products are classified into five categories: A (best)
to E (worst), based on their score[15].

2.1.2 Different Categories and Reliability

The Nutri-Score system, while designed to provide
a universal scoring method for various food prod-
ucts, faces challenges in its application across dif-
ferent categories. This can lead to inconsistencies
and potential misinterpretations when comparing
products from various categories.

For example, beverages, particularly those with
a high sugar content, tend to score poorly due to
their sugar levels. However, some sugary drinks
can also contain significant amounts of fruit, which
could make them healthier. For example, water will
always score better than a sugary drink, even if the
latter contains beneficial ingredients, such as fruit.

Furthermore, the Nutri-Score calculates scores
based on 100g of a product, which can be mislead-
ing when comparing different types of food. For
example, 100g of nuts is a reasonable serving size,
but 100g of bread is less typical, as people usu-
ally consume more bread in a single serving. This
discrepancy means that the Nutri-Score might not
accurately reflect the nutritional impact of a typi-
cal serving size of different foods. This is why the
Nutri-Score system assigns scores within individual
categories only. This approach ensures fairer com-
parisons within a category, but also limits direct
comparability across categories.

2.2 Software Sustainability Mea-
surement

In this section, we explore relevant sustainable soft-
ware literature, and analyze how the ideas con-
tained within can be applied in developing a sus-
tainability scoring system for open-source libraries.

In a recent review, Adadoga et al. [1] identi-
fied a range of practices, techniques and tools used
for sustainable software engineering. The authors
point out a number of practices which, when ap-
plied during the development and deployment of a
software product, can be conducive to the product’s
sustainability:

During the design of a product, the choice of
modular and reusable software architecture pat-
terns (e.g. microservices) can improve sustainabil-
ity by making future maintenance easier, and opti-
mizing energy consumption with containerization.
During development, algorithms and data struc-
tures can be optimized to reduce energy usage, and
validated with energy-aware testing. During de-
ployment, optimizing data center operations can
lead to reduced energy usage and carbon emissions.

Bengtsson et al. [6] zoom in closer on the ar-
chitecture design stage of software development,
proposing an analysis method called architecture-
level modifiability analysis (ALMA), with the goal
of reducing the cost of evolving a system over time.
This is related to the idea of reusable software ar-
chitecture patterns in [1].

Work in this field also extends beyond techni-
cal aspects of sustainability. Nauman et al. [11],
Becker et al. [4] and Noman et al. [12] recognize
multiple domains or dimensions of sustainability.
Social, i.e. impact on one’s sense of belonging,
perception and treatment, individual, i.e. impact
on one’s healthy, privacy and safety, economic, i.e.
impact on value, supply chains and customer rela-
tionships, and technical and environmental, i.e.
resource usage, maintainability and other aspects
already mentioned in this section.

While some of this literature focuses on software
sustainability through more abstract concepts like
modifiability or supportability, Albertao et al. [2],
[3] focus on more concrete measurements related
to these concepts. For example, the authors of [3]
suggest that modifiability be measured through e.g.
instability, defined as I = Ce/(Ca+ Ce), with Ca
the number of afferent couplings, and Ce the num-
ber of efferent couplings within a software pack-
age. Methods for labling sustainability have also
been proposed for specific categories of software like
machine learning models [8]. While these offer a
quantitative perspective on software sustainability,
value can be added by integrating multiple such
metrics into one, novel, holistic score that can be

2



applied to any library.
Broadly speaking, the reviewed literature de-

scribes introducing sustainability considerations
into the development and deployment process of
(mostly commercial) software products and ser-
vices. While this empowers organizations to take
control of the sustainability of their products, it
also means that it is mostly in the hands of the
organizations themselves to scrutinize the sustain-
ability of their own products, which could lead to
conflicts of interest. Open-source libraries, how-
ever, can be developed through decentralized con-
tributions from developers across the world. This
means we need a novel ability to evaluate sustain-
ability post-hoc. An evaluator that had no involve-
ment in the development process should be able to
assign a library a sustainability score by using it
and analyzing its code.
At the same time, the score should be based on

metrics which when measured post-hoc, represent
as many domains of sustainability as possible. As
evidenced by the literature described in this sec-
tion, this includes not only technical sustainability
and environmental sustainability, but also individ-
ual, social and economic sustainability.
Notably, such a post-hoc score could also enable

some external scrutiny of commercial software de-
veloped by organizations. Some commercial prod-
ucts depend on open-source libraries, and develop-
ers from such organizations sometimes make con-
tributions to open-source libraries to extend the
functionality of their products which rely on those
libraries [14].
With these requirements in mind, we describe

the design of our scoring system in the following
section.

3 Methodology

In this section, we explain how we adapt the con-
cept of Nutri-Score to create the HowSUS score -
a score of sustainability of software libraries. We
select a range of metrics that intend to measure
how well the given library adheres to various sus-
tainability domains, and demonstrate a framework
for computing a score using these measurements.
We also emphasize that the specific metrics and
calculation parameters we present are not inherent
to the framework, but rather an example use case.

For clarity, we highlight alternative metrics and use
cases of our framework to emphasize its flexibility
and generality.

3.1 Libraries and Categorization

The same way Nutri-Score (outlined in Section
2.1.2) does intra-category rankings, we design How-
SUS in a similar way. This is because different cate-
gories of libraries are suited for different tasks - for
example, a string parsing library might consume
significantly less energy than a scientific comput-
ing library, but that does not necessarily mean it is
more sustainable. Instead we aim to rank libraries
by sustainability within their category, so that the
user can select the most sustainable option for their
use case.

To prove our concept, we opt for Python li-
braries, and categorize them as follows:

Table 1: Library Categories and Their Members

Category Libraries

Matrix Multiplication Sympy, NumPy, Py-
Torch, TensorFlow,
Pandas

CSV Processing Pandas, PyArrow,
NumPy

Sorting Pytorch, TensorFlow,
NumPy, Pandas

Machine Learning Scikit-Learn, Ten-
sorFlow, PyTorch,
XGBoost, LightGBM

Network Libraries requests, urllib3, aio-
http, HTTPX

String Processing Built-in re, regex, py-
parsing, NLTK, spaCy

3.2 Library Test Descriptions

We created tests to measure how libraries perform
and how sustainable they are. The tests were
based on the main tasks each type of library is de-
signed for. For each type, we assessed key perfor-
mance metrics such as response time, memory us-
age, and energy consumption (estimated from ex-
ecution time). To make sure the averages of the
test are reliable, each test has been run 30 times.
Matrix Multiplication: Two randomly gener-
ated 1000x1000 matrices had to be multiplied by
the library function.

3



CSV Processing: The CSV readers had to read
a 100.000 line CSV file into memory and write it
back to disk in another location.
Sorting: This task involved sorting a dataset of
10 million random integers ranging from 1 to 100
million.
Machine Learning: We trained a logistic regres-
sion model on a dataset comprising 10,000 sam-
ples and 20 features, 15 of which were informative
and 5 redundant. Additionally, we standardized
the number of epochs/iterations across all libraries
to ensure a fair comparison
Network Libraries: To assess network libraries,
we performed download tests involving a 100MB
file from various endpoints. Both synchronous
and asynchronous tasks were evaluated by mea-
suring total download time and average download
speed. This approach provides insights into net-
work throughput and overall efficiency.
String Processing: For string processing li-
braries, we evaluated performance on tasks such as
tokenization and pattern matching. The tests used
different text processing approaches using Python’s
built-in and other modules. A large text sample
was replicated multiple times to ensure statistical
significance in measuring execution time and mem-
ory usage.

3.3 General Performance Metrics

This section describes the metrics we selected to
evaluate technical and environmental sustainabil-
ity.
Memory Usage, measured in megabytes (MB),

is an important metric, as lower memory con-
sumption signifies more efficient resource utiliza-
tion, reducing strain on hardware and minimizing
power usage. Energy Consumption, measured
in joules (J), during operation is another key mea-
sure, where reduced energy usage directly trans-
lates to a smaller carbon footprint and supports
sustainability. Execution Time, measured in sec-
onds, is crucial as faster execution reduces energy
use, which is especially important when processing
large amounts of data quickly.
These metrics are chosen because they directly

indicate the resource efficiency of libraries in ex-
ecuting their domain-specific tasks. For instance,
in string manipulation, shorter execution times not
only speed up text parsing but also reduce CPU

loads, enhancing sustainability in large-scale appli-
cations.

We implemented these metrics to compute a
Nutri-Score, offering a qualitative grade (ranging
from ”E” to ”A”). This score integrates weighted
averages to provide an assessment of a library’s per-
formance and long-term sustainability.

3.4 General Code Metrics

This section describes the metrics we selected to
evaluate other dimensions of sustainability, i.e. eco-
nomic, social and individual.

Instability and Abstractness Taken directly
from Albertao et al. [3], instability is defined as:

I =
Ce

Ce+ Ca

with Ca the number of afferent couplings and Ce
the number of efferent couplings. Abstractness is
defined as:

A =
Number of abstract classes

Total number of classes

We chose to include these because both quantify
the maintainability and reusability of a package,
representing an aspect of sustainable design and
engineering in the total score. Lower instability
might make maintenance easier because changes in
one part of the package are less likely to break other
parts. Higher abstractness might make adding fea-
tures easier since abstract classes serve as valuable
general building blocks.

These were measured using a custom Python
program, given as part of the replication package
(see Section 9).

Number of resolved issues in the past d days
These metrics are measured from the Github repos-
itorities of the libraries (see Section 9). We measure
the number of approved merge requests in the past
d days, and the number of closed issues in the past
d days. For our sample calculation, we took the
measurements with d = 30, but we intentionally
parametrize this for adaptation to other use cases.
These metrics were included to measure participa-
tion and sense of community, representing the so-
cial dimension. Higher numbers of resolved issues

4



indicate a healthier, more active open-source com-
munity, indicating that the library is received well
and has a positive impact on the community.

Number of known security vulnerabilities
This metric was measured manually, by counting
the number of low-severity, medium-severity, high-
severity and critical vulnerabilities reported for the
given pip packge on security.snyk.io. Let nl,
nm, nh and nc be the counts of low, medium, high
and critical vulnerabilities respectively. We calcu-
late the overall vulnerability score as

wlnl + wmnm + whnh + nc

with
∑

w = 1. For our example calculations, we
chose wl = 0.2, wm = 0.25 and wh = 0.5, i.e. 2
high-severity vulnerabilities count for one critical
and so on. Again, the formula itself is intentionally
parametrized.
We chose to include this metric to represent in-

dividual and economic sustainability. Security vul-
nerabilities in commonly used libraries could invite
attacks on software that uses them, potentially af-
fecting the well-being of the organization respon-
sible for the software, and disrupting the lives of
people involved.

3.5 Library-specific Metrics

It is also possible that the sustainability of a cat-
egory of libraries can be measured in some addi-
tional way. Therefore, our method allows for the
possibility to include some library-specific metrics
to measure and include in the final score.
Firstly, for the category of CSV file readers and

writers we also included disk accesses. This means
measuring read and write operations on the disk
of the task. This was included as more operations
means more disk wear. If a library is thus not ef-
ficiently implemented in this respect and performs
much more read and write operations than another,
it will get a penalty for this in the final score.
Secondly, for the machine learning task, we also

measured the average accuracy across multiple runs
for each library. Accuracy is a crucial metric in
evaluating machine learning models, as it reflects
their performance and indicates how much addi-
tional training may be required. A model that com-
pletes the task in a shorter amount of time does not

Metric Dimension
Energy consumption technical, environmental
Memory usage technical, environmental
Execution time technical, environmental
Disk accesses technical, environmental
Accuracy technical, environmental
Instability technical, economic
Abstractness technical, economic
Resolved issues technical, social
Security vulnerabilities technical, economic, individual

Table 2: An overview of how the metrics represent
the domains of sustainability.

necessarily perform better if its accuracy is lower.
Lower accuracy can imply that the model needs
further training, which in turn increases both the
overall training time and energy consumption.

3.6 Score Calculation

Firstly, we conducted an analysis of the calculation
of Nutri-Scores for food [13]. It was found that a
product could obtain certain plus and minus points
for a score in a specific category. These scores were
then added up and the final point score would then
lie between -15 and 40. Finally, a label is assigned
based on some pre-set thresholds.

A big difference between our use-case and that of
the Nutri-Score is the amount of products within
a category. If you go to an average supermarket
and look in the aisle containing for example cook-
ies, there are many choices, typically over 100. This
is not the case with software libraries, if there exist
10 libraries for a specific task, then this is consid-
ered many. The smaller sample size is a motivation
for some of our design choices. Like in the orig-
inal Nutri-Score the calculation allows for the in-
clusion of library-specific metrics such as accuracy
in machine learning tasks and disk accesses in CSV
readers.

We decided that the HowSUS score would lie be-
tween -1 and +2, this lower value is due to the lower
amount of scores compared to the original calcula-
tion. The calculations are done per category of li-
braries, possibly taking into account library-specific
metrics. The average per metric per library (such
as average memory usage for numpy) out of 30 ex-
periments is calculated. This is done for every li-
brary in a category, per metric (such as average
memory usage) the results are scaled such that the

5



lowest is -1 and the highest is +2, or vice versa
depending on whether lower is better. To do so,
the minimum and maximum average score for that
metric are identified. The scaling is done using the
formula below for every average score x:

score =
3 ∗ (x−minimumscore)

(maximumscore−minimumscore)
− 1

The scaled metrics are then added up for each
library and divided by the sum of the weighting of
every category to obtain a final score. This calcula-
tion is given in the formula below, with the scores
being per library and the weights remaining con-
stant:

finalscore =

∑
(score ∗ weight)∑

(weight)

The weights in our calculation are uniform (e.g.
1 for all metrics), as this study should mostly be
seen as a proof of concept. The interval between
-1 and +2 was divided into 5 equal intervals corre-
sponding to label ’E’ to ’A’. The interval in which
the final score falls in is also the label the library
gets assigned.

4 Results

Table 3: HowSUS scores of Libraries by Category

Category Library HowSUS score

CSV Processing
PyArrow A
Pandas C
NumPy E

Matrix Multiplication

PyTorch B
NumPy C
TensorFlow C
Pandas C
Sympy D

Sorting Pytorch B
Pandas C
Numpy C
TensorFlow E

Machine Learning LightGBM B
Pytorch B
XGBoost B
Scikit-Learn C
TensorFlow D

Network Libraries

aiohttp A
httpx-async E
httpx-sync E
urllib3 B

String Processing

NLTK tokenization A
pyparsing A
re (built-in) A
regex A
spaCy tokenization E

The results are presented in Table 3, where each
category is displayed along with the corresponding
library and its Nutri-Score label. Some categories
include libraries with varying labels, while others
consist of libraries mostly with the same label.

5 Discussion

The resulting labels highlight differences between
libraries within a given category. However, compar-
ing identical labels across different categories may
not indicate the same level of underlying metrics
(energy consumption, time spent etc.). However,
when evaluated within their own category the la-
bels reflect differences in sustainability levels. The
labels created can help inform users about the sus-
tainability of different libraries, allowing them to
make more intentional choices rather than simply
selecting the most commonly used or easily acces-
sible option.

Although the differences in sustainability be-
tween libraries may be small, we believe that con-
sistently choosing the library with a better Nutri-

6



Score, especially on a larger scale, can have a posi-
tive impact. It also signals to major companies that
users value sustainability. As awareness grows, in-
vestment in more sustainable programming tools
is likely to increase, leading to the development of
more sustainable products and technologies.
During our calculations, we gained a better un-

derstanding of why it is difficult to compare li-
braries from different categories - much like com-
paring foods between categories is challenging.
This is because the tasks performed by different
libraries can vary significantly, requiring different
levels of computational power and specialised met-
rics such as disk accesses or accuracy for certain
categories.
This introduced an additional layer of complexity

to our formula. While incorporating new metrics
for specific tasks can be useful, it is important that
they do not compromise the overarching principle
of the Nutri-Score, providing a comparable mea-
sure across all categories. In other words, a newly
introduced metric should not independently define
a category, as this would undermine the broader
goal of ensuring a unified scoring system.
Overall, this process helped us gain a better un-

derstanding of how sustainability labels work for
Python libraries and why direct comparisons be-
tween different task categories are often inaccurate,
similar to the classic food-based Nutri-Score. It
also highlighted the difficulties of developing a uni-
versal labelling system that ensures comparability
across all categories.

6 Limitations

An important point to evaluate is how well our
framework is able to represent each domain of sus-
tainability. It is clear from Table 2 that the tech-
nical and environmental domains are the most rep-
resented. However, this is also not too surprising.
Even though these should be considered only exam-
ples of what one could measure, we found it con-
siderably easier to measure technical and environ-
mental metrics.
Many technical metrics exist on a level of ab-

straction that makes them very quantitative in na-
ture and more readily available. On top of that,
metrics that measure technical sustainability tend
to correlate with environmental sustainability. For

example, energy consumption and memory usage
of course reflect resource consumption and environ-
mental sustainability, but they also affect scalabil-
ity which is a matter of technical sustainability.

While reviewing literature, we did encounter
some quantitative metrics that reflect non-technical
and non-environmental sustainability, but they did
not align well with our perspective of independently
evaluating open-source libraries. For example, Al-
bertao et al. [3] suggested measuring supportabil-
ity by dividing the number of user questions that
required assistance by the number of minutes the
software was used in a given session. This could
reflect individual and economic sustainability by
reflecting how active the support staff needs to
be, but open-source libraries might not have ded-
icated support staff, and data about session dura-
tion could be very difficult to obtain.

Additionally, effectively measuring social sus-
tainability seems to be even more challenging, be-
cause it exists on a higher-order, abstract level.
Measuring how much a library creates a sense
of participation in a safe, trustworthy community
might involve sentiment analysis on social media, or
analysis of news articles about software that uses
the given library. The catch is that both of these
examples could be research problems of their own.

A technical level, a limitation of the way our
score is calculated is that we take the average of
metrics, which makes it sensitive to outliers. In Ta-
ble 3, in the string processing category, there are 4
libraries with an A score and one library with an
E score. There might be meaningful variance be-
tween the 4 libraries with the A score, but because
spaCy drastically stands out with its runtime, the
range stretches so far that the other 4 end up in
the same bucket.

7 Extending the Framework

With the proof of concept laid out in this study,
the framework can be extended by adding addi-
tional metrics that span broader sustainability cat-
egories. For instance, while our current design al-
ready includes technical, environmental and some
community based metrics. In the future, social and
economic metrics, like community involvement, en-
gagement of users, economic resources, could pro-
vide a broader picture of a library’s sustainability,

7



although some of these other metrics would involve
more complex data collection and analysis.
For instance, some of the metrics called for

by Albertao et al.[3] include more sustainable at-
tributes such as supportability and maintainability.
While these metrics show valuable options, they are
harder to measure, because they rely on qualitative
data or subjective evaluations.
Regarding the scoring system’s sensitivity to out-

liers, one recommendation is to apply a logarith-
mic transformation to the raw metric values before
scaling. This method reduces the disproportion-
ate influence of extreme values. For example, in
the string processing category, some libraries have
exceptionally short processing times that can mis-
represent the overall score. A log transformation
would provide a more uniform and accurate com-
parison of performance across metrics.
While the current framework focuses on Python

libraries hosted on GitHub, it could be extended
to include libraries from other programming lan-
guages and platforms. Similarly, if a library spans
multiple functional categories, it should be assessed
separately. The final sustainability score should
then be calculated as a total or weighted average
of the individual scores from each category. This
approach ensures a fair and transparent assessment
across categories, avoiding any disadvantage to li-
braries that span multiple categories due to reliance
on a generalized score.
Therefore, while the framework provides a solid

foundation, these additions would lead to a more
comprehensive sustainability assessment that stays
relevant to software sustainability and evolves in
step with changing trends in the field over time.

8 Conclusion

The purpose of this report was to present a frame-
work for a sustainability scoring system for software
libraries. To do so, the inspiration for our idea, the
Nutri-Score, was analysed and used as a basis for
our own proposal. The proposed framework, which
was named ’HowSUS’, was subsequently tested by
applying it to python libraries for different tasks.
In line with the Nutri-Score our proposed method

is aimed at intra-category comparison of software
libraries. We have identified metrics such as mem-
ory consumption, execution time and energy con-

sumption to be general measures of performance
regardless of the category of library. Additionally,
we identified general code measures, including in-
stability, abstractness and the number of recently
resolved issues and security vulnerabilities. Our
framework allows for the inclusion of category spe-
cific metrics, such as amount of disk accesses for
IO applications and accuracy for machine learning
libraries.

After identification of the metrics relevant for
a sustainability score of the library we applied
our framework to different categories of python li-
braries. A final score was calculated for each library
based on the metrics obtained from the measure-
ments. Based on the final score a HowSUS label is
assigned ranging from ’E’ for the worst to ’A’ for
the best sustainability score.

In this report we have proposed and implemented
a generally applicable framework HowSUS for scor-
ing software libraries on sustainability. We have
demonstrated the framework using python libraries
and emphasised that expansion to any type of soft-
ware library along with additional metrics can be
made possible. We recommend wide adoption of
our framework to ensure users make the most sus-
tainable choices possible.

9 Replication Package

The replication package can be found at
https://github.com/the-chef0/howsus.

References

[1] Akoh Atadoga et al. “Tools, techniques, and
trends in sustainable software engineering: A
critical review of current practices and fu-
ture directions”. In: World Journal of Ad-
vanced Engineering Technology and Sciences
11.1 (Feb. 28, 2024), pp. 231–239. issn:
25828266. doi: 10 . 30574 / wjaets . 2024 .

11.1.0051. url: https://wjaets.com/
content/tools-techniques-and-trends-

sustainable - software - engineering -

critical - review - current (visited on
03/25/2025).

8

https://doi.org/10.30574/wjaets.2024.11.1.0051
https://doi.org/10.30574/wjaets.2024.11.1.0051
https://wjaets.com/content/tools-techniques-and-trends-sustainable-software-engineering-critical-review-current
https://wjaets.com/content/tools-techniques-and-trends-sustainable-software-engineering-critical-review-current
https://wjaets.com/content/tools-techniques-and-trends-sustainable-software-engineering-critical-review-current
https://wjaets.com/content/tools-techniques-and-trends-sustainable-software-engineering-critical-review-current


[2] Felipe Albertao. Sustainable Software
Engineering — PDF — Usability — Sus-
tainability. url: https : / / www . scribd .

com / document / 5507536 / Sustainable -

Software - Engineering (visited on
03/28/2025).

[3] Felipe Albertao et al. “Measuring the
Sustainability Performance of Software
Projects”. In: 2010 IEEE 7th Interna-
tional Conference on E-Business Engi-
neering. 2010 IEEE 7th International
Conference on e-Business Engineering
(ICEBE). Shanghai, China: IEEE, Nov.
2010, pp. 369–373. isbn: 978-1-4244-8386-
0. doi: 10 . 1109 / ICEBE . 2010 . 26. url:
http://ieeexplore.ieee.org/document/

5704342/ (visited on 03/28/2025).

[4] Christoph Becker et al. “Requirements: The
Key to Sustainability”. In: IEEE Software
33.1 (Jan. 2016), pp. 56–65. issn: 0740-7459.
doi: 10.1109/MS.2015.158. url: http://
ieeexplore.ieee.org/document/7325195/

(visited on 03/28/2025).

[5] Lotfi Belkhir and Ahmed Elmeligi. “Assess-
ing ICT global emissions footprint Trends
to 2040 recommendations”. In: Journal of
Cleaner Production 177 (2018), pp. 448–463.
issn: 0959-6526. doi: https://doi.org/10.
1016/j.jclepro.2017.12.239. url: https:
/ / www . sciencedirect . com / science /

article/pii/S095965261733233X.

[6] PerOlof Bengtsson et al. “Architecture-level
modifiability analysis (ALMA)”. In: Jour-
nal of Systems and Software 69.1 (Jan.
2004), pp. 129–147. issn: 01641212. doi: 10.
1016 / S0164 - 1212(03 ) 00080 - 3. url:
https : / / linkinghub . elsevier . com /

retrieve/pii/S0164121203000803 (visited
on 03/28/2025).

[7] Rébecca Deneckère and Gregoria Rubio.
“EcoSoft: Proposition of an Eco-Label for
Software Sustainability”. In: Advanced Infor-
mation Systems Engineering Workshops. Ed.
by Sophie Dupuy-Chessa and Henderik A.
Proper. Cham: Springer International Pub-
lishing, 2020, pp. 121–132. isbn: 978-3-030-
49165-9.

[8] Pau Duran et al. GAISSALabel: A tool for
energy labeling of ML models. 2024. arXiv:
2401.17150 [cs.SE]. url: https://arxiv.
org/abs/2401.17150.

[9] FoodChain ID. Food Labeling Regulations and
Nutri-Score. en-US. Feb. 2025. url: https:
//www.foodchainid.com/resources/the-

nutri-score-towards-a-unified-food-

labeling-system-in-eu/.

[10] Sasha Luccioni, Yacine Jernite, and Emma
Strubell. “Power Hungry Processing: Watts
Driving the Cost of AI Deployment?” In:
The 2024 ACM Conference on Fairness, Ac-
countability, and Transparency. FAccT ’24.
ACM, June 2024, pp. 85–99. doi: 10.1145/
3630106.3658542. url: http://dx.doi.
org/10.1145/3630106.3658542.

[11] Stefan Naumann et al. “The GREEN-
SOFT Model: A reference model for green
and sustainable software and its engi-
neering”. In: Sustainable Computing: In-
formatics and Systems 1.4 (Dec. 2011),
pp. 294–304. issn: 22105379. doi: 10 .

1016 / j . suscom . 2011 . 06 . 004. url:
https : / / linkinghub . elsevier . com /

retrieve/pii/S2210537911000473 (visited
on 03/28/2025).

[12] Hira Noman et al. “Towards sustainable soft-
ware systems: A software sustainability anal-
ysis framework”. In: Information and Soft-
ware Technology 169 (2024), p. 107411. issn:
0950-5849. doi: https://doi.org/10.1016/
j.infsof.2024.107411. url: https://www.
sciencedirect . com / science / article /

pii/S0950584924000168.

[13] Scientific Committee of the Nutri-Score. Up-
date of the Nutri-Score algorithm. Publisher
Name Scientific Committee of the Nutri-
Score, June 2022.

[14] PyTorch — NVIDIA NGC. url: https :

/ / catalog . ngc . nvidia . com / orgs /

nvidia / containers / pytorch (visited on
04/02/2025).

[15] RIVM. Nutri-Score. https://www.rivm.nl/
voedsel- en- voeding/nutri- score. [Ac-
cessed 28-03-2025]. Jan. 2025.

9

https://www.scribd.com/document/5507536/Sustainable-Software-Engineering
https://www.scribd.com/document/5507536/Sustainable-Software-Engineering
https://www.scribd.com/document/5507536/Sustainable-Software-Engineering
https://doi.org/10.1109/ICEBE.2010.26
http://ieeexplore.ieee.org/document/5704342/
http://ieeexplore.ieee.org/document/5704342/
https://doi.org/10.1109/MS.2015.158
http://ieeexplore.ieee.org/document/7325195/
http://ieeexplore.ieee.org/document/7325195/
https://doi.org/https://doi.org/10.1016/j.jclepro.2017.12.239
https://doi.org/https://doi.org/10.1016/j.jclepro.2017.12.239
https://www.sciencedirect.com/science/article/pii/S095965261733233X
https://www.sciencedirect.com/science/article/pii/S095965261733233X
https://www.sciencedirect.com/science/article/pii/S095965261733233X
https://doi.org/10.1016/S0164-1212(03)00080-3
https://doi.org/10.1016/S0164-1212(03)00080-3
https://linkinghub.elsevier.com/retrieve/pii/S0164121203000803
https://linkinghub.elsevier.com/retrieve/pii/S0164121203000803
https://arxiv.org/abs/2401.17150
https://arxiv.org/abs/2401.17150
https://arxiv.org/abs/2401.17150
https://www.foodchainid.com/resources/the-nutri-score-towards-a-unified-food-labeling-system-in-eu/
https://www.foodchainid.com/resources/the-nutri-score-towards-a-unified-food-labeling-system-in-eu/
https://www.foodchainid.com/resources/the-nutri-score-towards-a-unified-food-labeling-system-in-eu/
https://www.foodchainid.com/resources/the-nutri-score-towards-a-unified-food-labeling-system-in-eu/
https://doi.org/10.1145/3630106.3658542
https://doi.org/10.1145/3630106.3658542
http://dx.doi.org/10.1145/3630106.3658542
http://dx.doi.org/10.1145/3630106.3658542
https://doi.org/10.1016/j.suscom.2011.06.004
https://doi.org/10.1016/j.suscom.2011.06.004
https://linkinghub.elsevier.com/retrieve/pii/S2210537911000473
https://linkinghub.elsevier.com/retrieve/pii/S2210537911000473
https://doi.org/https://doi.org/10.1016/j.infsof.2024.107411
https://doi.org/https://doi.org/10.1016/j.infsof.2024.107411
https://www.sciencedirect.com/science/article/pii/S0950584924000168
https://www.sciencedirect.com/science/article/pii/S0950584924000168
https://www.sciencedirect.com/science/article/pii/S0950584924000168
https://catalog.ngc.nvidia.com/orgs/nvidia/containers/pytorch
https://catalog.ngc.nvidia.com/orgs/nvidia/containers/pytorch
https://catalog.ngc.nvidia.com/orgs/nvidia/containers/pytorch
https://www.rivm.nl/voedsel-en-voeding/nutri-score
https://www.rivm.nl/voedsel-en-voeding/nutri-score

	Introduction
	Related Work
	Nutri-Score
	Scoring System
	Different Categories and Reliability

	Software Sustainability Measurement

	Methodology
	Libraries and Categorization
	Library Test Descriptions
	General Performance Metrics
	General Code Metrics
	Library-specific Metrics
	Score Calculation

	Results
	Discussion
	Limitations
	Extending the Framework
	Conclusion
	Replication Package

