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1 Introduction

With the increasing reliance on Python for data sci-
ence applications, ranging from machine learning and
artificial intelligence to large-scale data processing,
energy efficiency in code execution has become a crit-
ical concern. The International Energy Agency (IEA)
estimates that data centers, heavily utilized by AI and
data science, consumed 460 terawatt-hours globally
in 2022, a figure projected to rise sharply by 2030
[1]. As data-driven workflows grow in complexity and
scale, inefficient code can lead to excessive energy con-
sumption, impacting both computational costs and
environmental sustainability [2].

Despite this growing concern, the energy consump-
tion of Python programs remains largely overlooked,
particularly in the context of data-intensive computa-
tions. Developers tend to prioritize performance and
functionality, often at the expense of energy efficiency
[3]. Data science workflows typically involve repeated
computations, large datasets, and complex transform-
ations, all of which increase the likelihood of inefficient
code patterns, such as unnecessary dataframe joins,
redundant model training, or excessive looping. These
inefficiencies not only raise computational costs but
also contribute to the environmental footprint of data
science practices, which are increasingly under pres-
sure to adopt sustainable methodologies [4].

Currently, most tools for measuring energy con-
sumption in Python code rely on dynamic analysis,
requiring program execution. Tools such as pyJoules
[5], CodeCarbon [6], and PyPen [7] offer real-time pro-
filing capabilities but are not suitable for early-stage
development when execution is either expensive or in-
feasible. In contrast, static analysis tools like Pylint1

and MyPy2 check for code quality and type safety, but
they lack the ability to detect energy-related issues.
This reveals a clear gap: there is currently no static
analysis tool focused on identifying energy-related
code smells in Python, particularly within data sci-
ence contexts.

To address this issue, we propose GreenCodeAna-
lyzer, a static analysis tool designed to detect energy-
intensive data science coding patterns in Python and
provide actionable recommendations to developers.
Implemented as a Visual Studio Code plug-in, Green-
CodeAnalyzer integrates energy-aware analysis dir-
ectly into the development workflow, without requir-
ing code execution, allowing developers to receive
early feedback on energy inefficiencies and write more
sustainable code from the outset. The tool leverages
Python’s Abstract Syntax Trees (ASTs) to statically

1Pylint’s website: https://pypi.org/project/pylint/
2MyPy’s website: https://mypy-lang.org/

traverse and analyze source code, which enables effi-
cient rule matching and code smell detection tailored
to common data science practices. It currently sup-
ports 20 static analysis rules derived from literature
and practical observations, targeting common inef-
ficiencies. This proactive approach not only helps
avoid costly rework later in the development cycle but
also aligns software engineering practices with broader
environmental goals [8, 9].

The tool currently supports rules for four of the
most common data science libraries in Python: Pan-
das, PyTorch, TensorFlow, and SciKit-Learn. We
tested the tool on 20 code files, where it identified a
total of 100 instances of energy-related code smells,
of which 78 were relevant and 22 were false positives,
resulting in a precision of 78%. By delivering prac-
tical, domain-specific feedback, our tool empowers
data scientists to adopt a more energy-conscious ap-
proach to writing code, ultimately contributing to
more sustainable data-driven innovation.

This report details our process of implementing
and evaluating GreenCodeAnalyzer. Section 2 provides
the theoretical background and static analysis prin-
ciples, and Section 3 reviews related work. Section 4
presents our proposed approach, followed by Section 5,
which describes its implementation as a Visual Studio
Code plug-in. Section 6 outlines our experimental
setup, with results and discussion covered in Sections
7 and 8. Section 9 discusses potential threats to valid-
ity, Section 10 explores future directions, Section 11
describes our dissemination efforts, and Section 12
summarizes our key findings. Through this study, we
show how GreenCodeAnalyzer contributes to sustain-
able software engineering and addresses a key gap in
making data science more energy-efficient.

2 Background

This section introduces foundational concepts motiv-
ating the static analysis tool proposed in Section 4.
It emphasizes static code analysis as a proactive ap-
proach to identify energy code smells.

2.1 Energy-Aware Software Engineer-
ing and Data Science

Concerns over the rising energy consumption and
environmental impact of technology have driven in-
creased interest in Green ICT (Information and Com-
munication Technology) [2, 10]. Green ICT encom-
passes the energy efficiency aspects throughout the
entire lifecycle and context of ICT systems. Within
this broad field, energy-aware software development
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is a critical component.
Energy-aware software engineering specifically fo-

cuses on employing tools and methods that prioritize
energy consumption as a primary software design
goal [11]. Currently, few programmers have a clear
understanding of the energy usage of their software
or which parts of their programs consume the most
power. As a result, energy considerations are often
overlooked during initial development stages and only
addressed after deployment. If energy targets are not
met post-deployment, it can result in lengthy and
costly redevelopment cycles.

One critical aspect within energy-aware software
engineering is energy-aware data science, which spe-
cifically addresses the energy impacts of data-intensive
tasks, such as machine learning model training, big
data processing, and complex analytical workflows.
Due to their computational intensity, data science and
AI applications have considerable energy demands.
As their use continues to expand, the overall energy
consumption associated with these technologies is
expected to significantly increase. Currently, data
science and AI workloads account for approximately
10% of data center electricity demand, and this share
is projected to rise to 20% by 2030 [12].

While energy consumption fundamentally occurs
through physical processes within hardware, software
significantly influences how efficiently hardware is util-
ized. Inefficient software can lead to energy waste,
which cannot be addressed solely through hardware
advancements. Thus, enhancing software energy effi-
ciency is crucial for reducing overall energy usage.

A key requirement for achieving this is energy
transparency - the capability for software developers
to clearly understand or visualize their program’s en-
ergy consumption without explicitly executing and
measuring it. According to Eder et al. [11], two
primary foundations underpin energy transparency:
energy modeling and static energy analysis. Energy
modeling involves constructing abstract models that
associate hardware-level energy consumption with spe-
cific software elements. Static energy analysis uses
these energy models to estimate the energy consump-
tion of software without actual execution.

The approach outlined in Section 4 describes a
simplified form of energy analysis aimed at integrating
energy considerations early in the development cycle,
primarily through identifying “energy code smells”
(see Section 2.2).

2.2 Energy Code Smells

Morisio et al. [13] define energy code smells as pat-
terns in source code that can increase software’s im-

pact on power consumption. These are suboptimal
implementation choices made at the source code level,
leading to inefficient utilization of hardware resources
and consequently higher energy or power consumption.
Given the multiple abstraction levels and organiza-
tional structures within software, smells can manifest
at the code, design, or architectural level. Typical
examples include needlessly draining CPU cycles, un-
necessarily keeping hardware active, or preventing
hardware from entering energy-saving states.

This concept extends the traditional notion of
code smells which refers to software design patterns
that negatively impact maintainability and code qual-
ity [14]. Through refactoring and optimization, code
smells can be addressed. Energy code smells adapt
this concept specifically towards energy efficiency and
sustainability in software development. Just as elimin-
ating traditional code smells enhances software main-
tainability and performance, refactoring energy code
smells can improve software energy efficiency.

Identifying and optimizing even minor inefficien-
cies in source code can collectively result in significant
energy savings and positive sustainability impacts
[9]. However, developers may not commonly recog-
nize these energy code smells, as they are not widely
documented or well-known. Consequently, increas-
ing awareness of energy code smells holds important
implications for sustainable software engineering.

Energy code smells can exist in diverse software
contexts, and some research has aimed at identify-
ing and mitigating common energy inefficiencies. For
instance, in the context of general software develop-
ment, Gurung et al. identified energy code smells
related to inefficient loop constructs in Java [15], such
as unnecessary iterations and flawed loop conditions.
Morisio et al. [13] specifically explored and validated
energy code smells within embedded systems, defining
smells such as dead local stores, which describe situ-
ations where a local variable is assigned a value that
is never subsequently read or utilized. Despite the
rising popularity and high computational demands
of data science - particularly given its current signi-
ficance - little research has focused on energy code
smells within the data science domain.

2.3 Static Analysis

Static analysis involves examining source code without
executing it. By parsing and inspecting code for spe-
cific patterns or rules, static analysis tools can identify
potential issues early in software development. Auto-
mated Static Analysis Tools (ASATs) scan the source
or binary code of a software system, searching for
predefined problems [16]. By addressing the warnings
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reported by ASATs, development teams can resolve
issues early in the software lifecycle.

Since their introduction in the 1970s, static ana-
lysis tools have become widely adopted by companies
due to the growing complexity of software [17]. These
tools evaluate a wide range of program properties,
from simple coding style guidelines to advanced soft-
ware bugs and complex security vulnerabilities.

ASATs typically use techniques such as data-flow
analysis and control-flow analysis to detect defects in
source code [16]. However, ASAT techniques often
struggle to scale effectively. To manage complex-
ity, abstractions are applied, but these abstractions -
along with the inherent undecidability of accurately
checking certain program properties - result in high
false positive and false negative rates. Additionally,
warnings from ASATs can sometimes be difficult to
understand, making it important to carefully select
which issues to highlight and how to communicate
them clearly to developers, as evaluating warnings
can be time-consuming.

Despite these challenges, research indicates that
71% of developers do consider warnings from ASATs
[18], particularly when contextually relevant, thus
confirming the potential value of ASATs in enhancing
code quality.

3 Related Work

A variety of tools have been developed to assess and
improve the energy efficiency of software. These tools
can be broadly categorized into dynamic analysis tools,
which measure energy consumption during runtime,
and static analysis tools, which identify energy ineffi-
ciencies by analyzing code without execution. Below,
we explore these categories separately.

3.1 Dynamic Energy Analysis Tools

Dynamic analysis tools monitor and profile energy con-
sumption during software execution, offering insights
into real-time energy usage.

CodeCarbon [6] is a lightweight Python package
that estimates the carbon dioxide emissions generated
by cloud or personal computing resources during code
execution. It calculates emissions based on power
consumption and location-dependent carbon intensity,
helping developers reduce emissions by optimizing
code or hosting their cloud infrastructure in regions
that use renewable energy sources.

PyJoules [5] is a toolkit focused on measuring
the energy footprint of a host machine while executing
Python code. It tracks consumption from hardware

components like Intel CPU socket packages, RAM, or
GPUs using interfaces such as Intel’s Running Average
Power Limit (RAPL).

Similarly, EnergiBridge [19] is a cross-platform
measurement utility that leverages hardware interfaces
like RAPL to measure consumption during runtime.

PyPen [7] is a cross-platform profiler that collects
detailed execution data through instrumentation (i.e.
inserting monitoring instructions). It identifies energy
hotspots, which are sections of the software where
energy consumption is highest.

ALEA (Adaptive Lightweight Energy Analyzer)
[20] provides detailed energy profiling through probab-
ilistic analysis, offering fine-grained information at the
basic block level with minimal performance overhead.

MANAi (Method ANalysis for AI) [21] is an In-
telliJ IDEA plug-in that profiles and visualizes the
energy consumption of Java unit test methods, deliv-
ering real-time visual feedback.

The dependence of dynamic tools like these on
code execution can make them less practical for early-
stage development or large-scale applications where
running the code is resource-intensive. Our approach,
GreenCodeAnalyzer, focuses on early-stage develop-
ment through static analysis.

3.2 Static Analysis for Energy Efficiency

Static analysis tools examine source code to detect
energy code smells without requiring execution. This
approach allows developers to identify potential issues
early in the development process.

Green Code Initiative [22] is a collaborative
effort aimed at reducing the environmental impact of
software by promoting energy efficiency. It develops
static analysis tools for multiple programming lan-
guages (e.g. Java, C#) to identify code structures
that lead to excessive energy and resource use.

GreenCode [23] is a VSCode plug-in that provides
real-time insights into code, highlighting optimization
opportunities in SQL queries and other sections with
color-coded severity indicators.

Ec0lint [24] is an open-source tool designed for
frontend developers to minimize the carbon footprint
of websites, claiming significant reductions in CO2
emissions through static analysis.

GreenForLoops [15] is a Java Maven custom
SonarQube plug-in that targets energy code smells in
Java loops, such as unnecessary iterations or inefficient
looping conditions.

EnergyAnalyzer [25] focuses on embedded soft-
ware, constructing a control-flow graph to analyze
execution paths and estimate worst-case energy con-
sumption, informed by hardware event counters (e.g.,
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cache misses, executed instructions).
SAAD (Static Application Analysis Detector) [26]

targets Android applications, detecting resource leaks
and layout defects by analyzing component call graphs
and resource management. It integrates with An-
droid’s Lint tool to filter out energy-related defects.

In the context of data science, GreenPyData
[27] is an open-source SonarQube plug-in for PyTorch,
identifying six code smells, such as unnecessary bias
in convolution layers before batch normalization.

However, static analysis for energy code smells
in data science remains largely unexplored. While
GreenPyData is an exception, it is limited to the Py-
Torch library, and most existing tools focus on general
software development or other fields. Additionally,
most of these tools target languages like Java or C#,
despite Python being the most popular programming
language [28]. Our approach fills this gap by focus-
ing specifically on Python and data science, covering
libraries such as Scikit-learn, NumPy, Pandas, and
TensorFlow, in addition to PyTorch.

4 Solution Proposal

We approach the identified gap in the literature by
building a tool with a user-centered focus. This con-
siders both the developer perspective for anyone want-
ing to expland our project any further, and the end-
user wanting to employ our tool to obtain more energy-
aware Python code. With this in mind, we build a
tool that seamlessly integrates into a VSCode plug-in
for ease of use. GreenCodeAnalyzer can be defined
as a static analysis tool, implemented in Python, for
reducing unnecessary energy consumption in Python
scripts within the domain of DS and AI.

The tool identifies code smells in Python scripts,
and offers a ‘green optimization’ for each type of
smell. The code smells and their optimizations are
determined through a literature study on common
patterns and library calls that have equivalent yet less
energy consuming alternatives. The rules are carefully
chosen, each tailored to one or more data-science-
specific libraries in Python. Specifically, we define 20
rules as we believe this number strikes the balance
between generalizability throughout AI-specific code
and the quality each rule is managed to be crafted to.

When using our plug-in and being offered optimiza-
tions, end-users can choose to apply these to effectively
reduce the energy consumption of their scripts at run
time.

5 Implementation

This section outlines implementation details to de-
tecting energy-related code smells. First, we describe
how Abstract Syntax Trees (ASTs) enable structured
static code analysis. Then, we detail how we identify
energy code smells and discuss an ASAT in the formal
of a Visual Studio Code (VSCode) plug-in.

Figure 1: Conceptual view of GreenCodeAnalyzer.
The system takes source code as input, parses it into
an Abstract Syntax Tree (AST), and applies multiple
modular rules per node to detect energy code smells.
The identified smells are then provided as visual feed-

back.

5.1 Static Code Analysis Using Ab-
stract Syntax Trees

We implement a static analysis tool designed to detect
energy code smells in of Python software in the context
of data science. A conceptual view of this tool is
illustrated in Figure 1. As depicted, the static analysis
process begins by taking a Python code file as input.
The input code is parsed into an Abstract Syntax Tree
(AST) using Python’s built-in ast library3. An AST
is a structured, hierarchical representation of code,
where each programming construct - such as functions,
loops, and conditional statements - is represented as a
distinct node within the tree. An example of an AST
is depicted in Figure 2.

After constructing the AST, we traverse each node
systematically. During this traversal, the analysis
engine applies a predefined set of energy-related rules
to each node to identify potential energy code smells.
The detailed methodology defining these rules and
the specific criteria for identifying energy code smells
are discussed in Section 5.2.

Once all relevant nodes have been analyzed, the
analysis engine aggregates the identified code smells,
annotating the corresponding line numbers. These

3AST documentation: https://docs.python.org/3/

library/ast.html
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results are then passed to the plug-in frontend, which
visually presents the findings to users, facilitating im-
mediate feedback and actionable insights. Further
details on the plug-in’s functionalities and user feed-
back mechanisms are provided in Section 5.3.

The internal implementation details of the analysis
engine and code in general are intentionally omitted
here for brevity. Developers interested in contribut-
ing or reviewing the specifics of the analysis engine
can find the complete implementation on the GitHub
repository 4.

Figure 2: An example of an Abstract Syntax Tree
(AST) [29], which represents the syntactic structure
of code as a hierarchical tree. Each node corresponds
to a language construct, with branches capturing re-
lationships between operations, variables, and values.

5.2 Code Smell Identification

Energy code smells are identified using modular rules,
as illustrated in Figure 1. This design approach main-
tains the open-source nature of the project and allows
developers to easily extend the ruleset with additional
energy code smells that have not yet been considered.

In our approach, we identify energy-related ineffi-
ciencies (code smells) specifically within Python code
used for data science applications. Identification is
based on previous literature, existing repositories that
explore related concepts, and logical analysis. The
developed static analysis tool systematically detects
and highlights these inefficiencies. The current ruleset
specifically focuses on five widely used data science
libraries: PyTorch, NumPy, Pandas, TensorFlow, and
Sci-Kit Learn. However, the rules are designed with
extensibility in mind, allowing developers to easily
expand the coverage to additional libraries.

4GreenCodeAnalyzer GitHub:
https://github.com/ianjoshi/green-code-analyzer

In total, we define 20 energy code smells, each with
its own corresponding detection rule. An overview of
these identified smells, along with the description for
each, is provided in Table 1.

The rules operate on individual nodes within the
Abstract Syntax Tree (AST). For example, a rule
might specifically target a For Loop, a variable assign-
ment, or an entire module. Certain rules require the
systematic collection of metadata, such as variable
chains or counters, during analysis. This metadata
is stored internally within each rule since only one
instance of each rule exists during the execution of
the GreenCodeAnalyzer plug-in.

The exact methodology for detecting smells varies
by rule. By isolating implementation details within
each rule, modularity is significantly enhanced. Some
rules utilize regular expression patterns, whereas oth-
ers might employ variable tracking through assign-
ment chains.

5.3 Green Code Analyzer: A Visual
Studio Code Plug-In

To enable seamless interaction with the project’s logic
and provide real-time feedback, we develop a Visual
Studio Code extension: GreenCodeAnalyzer. This
extension allows developers to detect and address
energy inefficiencies in Python code directly within
their IDE, promoting energy-aware development “left”
(earlier) in the coding process. The architecture of
GreenCodeAnalyzer lies at both ends of the project
pipeline: initially taking in the user’s Python file and
later highlighting inefficiencies detected using visual
cues directly within the code editor, offering users
immediate feedback.

The workflow begins when a user runs the ex-
tension to analyze the Python file they are actively
working on. The extension isolates this file and runs
the analyzer tool on it, which executes its logic by first
extracting the Abstract Syntax Tree (AST) and com-
paring it against a predefined set of rules (Table 1).
When the analysis is complete, a structured output
with details of all detected inefficiencies is returned
to the plug-in.

The plug-in then parses this output, extracting
key details such as the lines of code that contain inef-
ficiencies, the specific rule each line violated, and the
recommended optimization. It then visually repres-
ents these findings within the editor by marking prob-
lematic lines with color-coded gutter icons, providing
a clear indication of energy inefficiencies in the code.
When the user hovers anywhere over an affected line, a
hover tooltip appears, providing more detailed inform-
ation on the smell. If multiple rules were matched to

5



Energy Code Smells Description

Batch Matrix Multiplication When performing multiple matrix multiplications on a batch of matrices, use
optimized batch operations rather than separate operations in loops.

Blocking Data Loader [27] Prevent using data loading strategies that stall GPU execution (e.g., single-process
or sequential data loading).

Broadcasting [30, 31] Normally, when you want to perform operations like addition and multiplication,
you need to ensure that the operands’ shapes match. Tiling can be used to match
shapes but stores intermediate results.

Calculating Gradients
[32, 33]

When performing inference (i.e., forward pass without training or
backpropagation), some frameworks by default track operations for autograd, while
others track only if specified.

Chain Indexing [30] Chain indexing refers to using df["one"]["two"], which can be interpreted as two
separate calls, causing performance overhead.

Conditional Operations [30] When performing a conditional operator on an array or dataframe inside loops,
consider vectorized methods (e.g., np.where()).

Data Parallelization [27] Refrain from wrapping models in torch.nn.DataParallel when
torch.nn.parallel.DistributedDataParallel (DDP) is superior, even on a
single node.

Element-Wise Operations
[30]

Doing element-wise computations in Python loops is inefficient; use vectorized or
library-based methods.

Excessive GPU Transfers Frequently moving data between CPU and GPU (e.g., .cpu() then .cuda()) leads
to overhead and stalls.

Excessive Training [34] Continuing to train a model after validation metrics plateau wastes time and
resources. Use early stopping or convergence criteria.

Filter Operations [30] When performing a filter operator on an array, tensor, or dataframe inside loops.
Use Boolean indexing or masking for efficiency.

Ignoring Inplace Ops [35] Failing to use in-place variants of PyTorch operations (e.g., add , mul ) leads to
extra memory allocations.

Inefficient Caching of
Common Arrays [36]

Recreating the same arrays or tensors repeatedly in a loop (e.g., np.arange(0,n))
rather than caching them.

Inefficient Data Loader
Transfer [27]

Using standard pageable CPU memory for large GPU data transfers can stall the
GPU; pinned memory (pin memory=True) is often faster.

Inefficient Data Frame Join
[37]

Performing repeated joins on large DataFrames without indices or merge strategies
can be extremely slow.

Inefficient Iterrows Using iterrows in Pandas to manipulate data row-by-row is far slower than
vectorized methods.

Large Batch Size Memory
Swapping [38]

Setting a batch size that exceeds GPU memory forces excessive swaps or CPU
fallback, slowing training.

Recomputing GroupBy
Results [37]

Calling .groupby() multiple times on the same data for similar aggregates wastes
CPU time.

Reduction Operations [30] Performing sums, means, etc. in Python loops is inefficient; libraries offer
optimized vectorized reduction ops.

Redundant Model
Re-Fitting [39]

Continuously calling .fit() on the same dataset multiple times without changes in
hyperparameters or data leads to repeated overhead.

Table 1: The 20 implemented energy code smells and their respective descriptions. Where applicable,
references are provided to support the formulation of the smell. For further insight into the rationale
behind smells, associated libraries, and recommended optimizations, refer to the GreenCodeAnalyzer website:
https://mescribano23.github.io/GreenCodeAnalyzer/.
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the same line, the tooltip displays them consecutively
in the tooltip. For every identified smell, the tooltip
presents three key details:

1. The code smell rule detected

2. A description of the inefficiency

3. A suggested optimization to improve energy ef-
ficiency

A visualization of how the tool is seen in an editor win-
dow can be found in Figure 3. Additionally, the user
has the option to clear the editor margins, removing
all highlighted lines.

By providing a plug-in which integrates with the
analyzer tool and provides visual results, we allow
developers to easily spot and address energy inefficien-
cies directly in the development environment.

6 Experimental Setup

We design the experimental setup to assess the utility
of GreenCodeAnalyzer in real-world settings. It in-
cludes a preliminary check to ensure that the defined
rules can successfully detect their respective code
smells, followed by an experiment to evaluate the
plug-in’s practical effectiveness.

A successful preliminary check is a prerequisite be-
fore proceeding to the main utility experiment. This
step involves defining Python functions with delib-
erately crafted violations of each rule. To pass the
preliminary check, every crafted violation has to be
correctly identified with its corresponding code smell.
This is manually inspected and verified.

Figure 4: Diagram of the experiment flow. The plug-
in takes a Python code file to analyze. This file is then
matched against energy rules to identify any energy
code smells. When the analysis is complete, a manual
report of the true positives and false positives is done.

A general diagram of the procedure behind the
utility experiment can be seen in Figure 4. A more
detailed breakdown of the steps illustrated are:

1. Pick a Python file from a diverse set of reposit-
ories in the domain of artificial intelligence and
data science (hereafter referred to as ‘test-files’).
The repositories include both personal projects
and externally authored public repositories.

2. Run the plug-in on each test-file.

3. For each detected code smell, record the number
of True Positives and false positives, providing
descriptions of why the false positives were clas-
sified as such.

4. Repeat steps 2-3 for each test-file in the collec-
tion until at least 20 different files with at least
one code smell are inspected.

The number of true positives serves as an indicator
of how effective GreenCodeAnalyzer is at detecting
energy-inefficient code. However, false positives are
equally important. If their count is too high, it di-
minishes the significance of a high true positive rate,
as users may become overwhelmed by excessive code
smell notifications that require manual review [40].

7 Results

We conduct the evaluation of GreenCodeAnalyzer in
two stages: a preliminary check and the main utility
experiment. The preliminary check confirms that
all crafted rule violations are successfully detected
and correctly identified with their respective code
smells. This validation ensures that the plug-in is
functioning as intended before proceeding to the utility
experiment.

The results of the utility experiment are shown in
Table 2. A total of 20 Python files from diverse sources
are analyzed, and the total results are compiled. To
collect these statistics, once each file is analyzed with
the tool, we perform a manual inspection of the de-
tected smells to classify the highlighted inefficiencies
into either true positives (TPs) or false positives
(FPs). The individual results for each file are then
combined to produce the final results.

As shown in Table 2, GreenCodeAnalyzer success-
fully detects 11 out of the 20 rules. A total of 100
energy code smells are detected across 20 files, aver-
aging at 5 smells per file. Among these inefficiencies,
we verify 78 as true positives and 22 as false positives,
giving a true positive rate of 78% and a false posit-
ive rate of 22%. Only four rules contained FPs, out
of which, Excessive Training and Filter Operations
have the highest rates, at 40% and 39%, respectively.
Additionally, Excessive Training is the rule with the
most flagged inefficiencies, and the highest number of
both TPs and FPs. In contrast, from the rules with
no FPs, Ignoring Inplace Ops stands out for having
the highest number of true positives (13) without a
single misclassification.

We identify several recurring patterns that lead to
false positives:
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Figure 3: VSCode window showcasing how the user is currently hovering over line 414, which displays the
hover tooltip with details on detected code smell ‘Ignoring Inplace Operations’. A description of the smell
and possible optimization are also provided.

Rule # Smells Detected # True Positives # False Positives
Blocking Data Loaders 13 10 3
Calculating Gradients 14 10 4
Chain Indexing 7 7 0
Excessive Training 28 17 11
Filter Operations 10 6 4
Ignoring Inplace Ops 13 13 0
Inefficient Caching of Common
Arrays

3 3 0

Inefficient DataFrame Joins 1 1 0
Inefficient Data Loader Trans-
fer

8 8 0

Inefficient Iterrows 1 1 0
Suboptimal Data Paralleliza-
tion

2 2 0

Total 100 78 22

Table 2: Table summarizing the results of the code smells detected in the 20 test files. This table contains
only rules that were matched against. For each rule we report the number of times it is detected, along with
the number of true positives and the number of false positives. The last row sums the statistics for each
individual smell into the total statistics.

• Context Misinterpretation: For example,
loops flagged under Excessive Training are not
performing actual training. These include it-
erations over data for computing statistics or
tracking values.

• Overgeneralized Heuristics: The Filter Op-
erations rule flags loops involving file filtering
or condition-based selections, where vectoriza-
tion is not practical due to I/O operations or
dynamic processing logic.

• Subtle Functional Roles: Instances flagged
under Calculating Gradients are actually part
of non-optimization-related computations, such
as diagnostics or logging.

8 Discussion

The evaluation results show that GreenCodeAnalyzer
is a promising tool for detecting energy inefficiencies
in Python code, particularly within data science work-
flows. The preliminary check demonstrates that the
plug-in correctly identifies the crafted rule violations,
and the utility experiment shows that the tool func-
tions as intended when run on realistic codebases
rather than specifically crafted examples.

As presented in Section 7, GreenCodeAnalyzer de-
tects a total of 100 energy-related code smells across
20 Python files, with a 78% true positive rate. This
result highlights the prevalence of energy code smells
in real-world data science applications and underscores
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the potential for energy optimization within the field.
GreenCodeAnalyzer successfully activates 11 out of
the 20 implemented detection rules, demonstrating
its capacity to generalize across diverse scripts. Given
that data science workflows often involve complex op-
erations on large datasets, the correct identification of
inefficiencies is crucial for developers aiming to reduce
energy consumption. While this coverage highlights
the prevalence of energy code smells, the 22 false pos-
itives (22%) also reflect the inherent complexity of
accurately identifying energy inefficiencies via static
analysis.

Compared to prior work in this space, as explored
in Section 3, our tool adopts a static, rule-based ap-
proach that trades depth for energy efficiency and
real-time feedback within the developer’s IDE. This
trade-off, however, introduces challenges such as am-
biguous coding contexts and overgeneralized heuristics.
As shown in Section 7, instances of Excessive Training
are often false positives. The reason being that the
misclassified code lines structurally resemble training
loops but serve unrelated purposes (e.g., computing
means or tracking metrics). This underscores the need
for more code context to distinguish these spanning
structures from actual code smells. Similarly, the
Filter Operations rule often matches against patterns
that are necessary for I/O operations or dynamic lo-
gic, such as dictionary creation, but these code lines
(e.g. if file.endswith(’.csv’)) are not related to
filtering and cannot be optimized with boolean index-
ing as suggested by the rule. These kinds of errors
are difficult to eliminate without deeper semantic ana-
lysis, such as program slicing, symbolic execution, or
combining static analysis with lightweight runtime
profiling.

From a developer’s perspective, false positives in-
troduce the risk of notification fatigue. Developers
may quickly begin to ignore warnings from the tool if
it regularly surfaces low-value or false alerts, which
diminishes the overall trust in the system. To combat
this, future iterations of GreenCodeAnalyzer could
introduce confidence scores, customizable rule sets, or
interactive feedback loops where developers can flag
misclassifications, thereby helping the tool adapt to
the project’s context over time.

Related to the risk of notification fatigue is plug-
in fatigue, especially for data scientists who already
juggle multiple tools, extensions, and environments.
For GreenCodeAnalyzer to be adopted, it needs to
fit smoothly into existing workflows like VS Code or
Jupyter, and avoid overwhelming users with unneces-
sary alerts. With a 22% false positive rate, Green-
CodeAnalyzer has room for improvement in reducing
misclassifications to enhance developer trust and us-

ability.
We recognize that this is a difficult problem, and

GreenCodeAnalyzer is only one piece of the solution.
As far as our project goes, further refinement of the
detection rules and additional testing on a broader
range of Python codebases could help to reduce the
occurrence of false positives and improve the tool’s
precision. As a community, we might benefit from
a shared benchmark of annotated real-world energy
inefficiencies, as well as a standardized evaluation pro-
tocol that compares tools across dimensions like recall,
precision, usability, and developer trust. Encouraging
open datasets and shared tooling infrastructure, sim-
ilar to what the machine learning community has done
for fairness and robustness, could accelerate progress.

All in all, GreenCodeAnalyzer can be an effective
first step in promoting energy-efficient coding prac-
tices. However, there is room for improvement in
terms of reducing false positives and further optim-
izing the tool’s ability to detect energy inefficiencies.
Moreover, the insights underscore the need for further
research in context-aware static analysis and energy-
aware development tools.

9 Threats to Validity

A primary limitation that affects the validity of our
conclusions is the relatively small number of test files
assessed. This limitation arises because evaluating the
files required physical inspection for correctness. As a
result, the conclusions drawn are based on a subset of
files that may not fully capture the diversity of real-
world projects. Consequently, the test files may not
represent all the code smells or the different syntaxes
associated with the code smells that our rules target.
While this limitation weakens our conclusions, we still
believe that the experiments provide valuable insights
into the utility of the tool.

Additionally, our study does not analyze false neg-
atives, an important aspect that could provide insight
into the robustness of our rule definitions and influence
user adoption. However, we opted for this approach,
believing that consistently high false positives and low
false negatives would be sufficiently indicative of the
tool’s usefulness.

Another concern arises from the manual inspection
process. Given the potential for bias and errors in
our evaluations, the validity of our findings could be
compromised. A more robust approach would involve
user studies to collect feedback or the evaluation of the
plug-in’s performance by a panel of external experts
using a selected set of test files.

Finally, a significant threat to validity lies in the
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effectiveness of the optimizations in improving energy
efficiency. While the optimizations were identified
through a literature review, experimental validation
of their effectiveness would provide stronger evidence
supporting the claim that these optimizations lead to
improved energy efficiency.

10 Future Work

Several directions can enhance the capabilities, ef-
fectiveness, and reliability of the GreenCodeAnalyzer
static analysis tool. Recommendations for future work
include:

Expanding the Ruleset. Increasing the vari-
ety and number of energy code smells identified will
enhance the tool’s usefulness. The current ruleset
could be extended further within existing libraries, as
well as expanded to additional data science libraries
such as natural language processing libraries (e.g.,
NLTK5) and visualization libraries (e.g., Matplotlib6,
Seaborn7). Furthermore, introducing rules targeting
specific machine learning model inefficiencies, such as
excessively layered neural networks, would improve
coverage.

Combining Static and Dynamic Analysis.
While static analysis highlights potential inefficien-
cies early, real-world energy consumption depends on
runtime execution and hardware interactions. Integ-
rating static analysis with dynamic profiling tools can
validate and refine findings.

Automated Refactoring and Suggestions. To
streamline developer efforts in addressing energy ineffi-
ciencies, the analyzer could incorporate automated re-
factoring solutions for straightforward optimizations.

User Studies. Conducting user studies to eval-
uate the practical utility and usability of the tool
in real-world data science workflows would provide
valuable insights into its effectiveness and areas for
improvement.

Quantifying Impact of Energy Code Smells.
Incorporating heuristic-based energy consumption es-
timates or assigning severity levels to code smells
would provide developers clearer guidance on the most
impactful inefficiencies to address for greener coding
practices.

Improving Accuracy. Enhancing the robust-
ness and generalizability of existing rules to reduce
false positives is essential for user adoption. Although
achieving perfect accuracy is challenging, iterative

5NLTK’s website: https://www.nltk.org/
6Matplotlib’s website: https://matplotlib.org/
7Seaborn’s website: https://seaborn.pydata.org/

refinement based on user feedback and additional val-
idation can significantly improve the tool’s reliability.

11 Dissemination

We aim to make energy-efficient software engineering
practices accessible to the community and create a
broad impact, enabling data scientists, developers,
and enthusiasts to adopt greener coding practices
and contribute to the ongoing development of Green-
CodeAnalyzer. To ensure broad reach and facilitate
user engagement, we have employed several dissemin-
ation channels:

VS Code Plug-in: The core of the GreenCodeAna-
lyzer tool is a plug-in for Visual Studio Code, which
allows users to integrate energy smells checks directly
into their development environment. This provides
an easy and efficient way for data scientists and soft-
ware engineers to identify energy code smells in their
Python code before execution.

Project Website: A dedicated website8 for Green-
CodeAnalyzer provides additional information about
the plug-in, including detailed descriptions of the
energy-smell rules implemented in the tool. This plat-
form serves as a central hub for learning about the
project and understanding how users can benefit from
the energy-focused analysis it offers.

Open-Source GitHub Repository: The pro-
ject is available as an open-source repository on Git-
Hub9. The repository contains a comprehensive README
file that explains how to install and use the plug-in.
Additionally, a CONTRIBUTING.md file is included
to encourage contributions from the open-source com-
munity. This section provides guidelines for anyone
interested in improving or extending the tool, ensur-
ing that GreenCodeAnalyzer remains a collaborative
and evolving resource.

Social Media Presence: To further engage with
the community and raise awareness, we have estab-
lished a public Instagram page (@greencodeanalyzer).
Through this platform, we share updates, best prac-
tices, and tips on energy-efficient coding, helping to
build a community around sustainable software engin-
eering.

12 Conclusion

In this paper, we presented GreenCodeAnalyzer, a
static analysis tool implemented as a VSCode plug-in,

8GreenCodeAnalyzer’s dedicated website: https://

mescribano23.github.io/GreenCodeAnalyzer/
9GreenCodeAnalyzer’s Github repository: https://github.

com/ianjoshi/green-code-analyzer
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designed to detect energy-related code smells in Py-
thon within the data science domain. The tool utilizes
Python’s Abstract Syntax Trees (ASTs) to efficiently
analyze source code and identify energy inefficiencies
without requiring code execution. The tool currently
supports 20 static analysis rules, found through ana-
lyzing literature and practical observations. It offers
actionable recommendations for optimization, pro-
moting energy-aware development practices. This
capability is crucial for enabling developers to pro-
actively address potential energy consumption issues
early in the development lifecycle.

The evaluation of GreenCodeAnalyzer on 20 Py-
thon files demonstrated its effectiveness in detecting
100 energy code smells, with a true positive rate of
78%. The findings confirm the prevalence of energy in-
efficiencies in real-world data science applications and
highlight the potential for significant energy savings
through targeted code optimizations.

While the results are promising, there is room for
improvement, particularly in reducing false positives
and expanding the tool’s ruleset. Future work in-
cludes incorporating dynamic analysis, automating
refactoring suggestions, conducting user studies, and
quantifying the impact of energy code smells.

In conclusion, GreenCodeAnalyzer represents a
significant and valuable contribution to the field of
sustainable software engineering, specifically in the
domain of data science. The project is available as
an open-source repository on GitHub, encouraging
contributions from the community to improve and
expand the tool. By providing a practical and effective
tool for identifying and addressing energy inefficiencies
in Python code, it empowers developers to create more
energy-efficient software, ultimately contributing to a
more sustainable technological ecosystem.
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