
Enhancing EnergiBridge: A Service-Based
Approach to Energy Profiling

Sofia Konovalova (6174019), Kaijen Lee (5100887), Violeta Macsim (5498031), Jakub Patałuch (5514274)
Delft University of Technology, Delft, The Netherlands

Abstract—Energy efficiency is an increasingly important con-
cern in software development, yet existing measurement tools are
often difficult to integrate due to permission issues and limited
compatibility with modern environments. This paper presents
two service-based implementations of EnergiBridge, an open-
source energy profiling tool, designed to improve accessibility
and support fine-grained energy monitoring.

We implement the services in Rust and C++, exposing En-
ergiBridge’s functionality via JSON-RPC. These services allow
developers to measure energy consumption at the function level
using language-agnostic RPC clients, such as a Python decorator.
The Rust service performs in-process measurements using native
libraries, while the C++ version wraps the original CLI tool.

We compare both services with the classic EnergiBridge across
idle and compute-intensive scenarios. Results show minimal
overhead and consistent energy readings, validating the reliability
of the service-based approach.

Our findings showcase the potential of service-based tools
to provide accurate, automatable, and flexible energy measure-
ments—suitable for integration in development pipelines and
containerized environments.

Our work can be found at https://github.com/reglayass/
EnergiBridge RPC

Index Terms—energy, consumption, RPC, service, measure-
ment tool

I. INTRODUCTION

As the world transitions to unplugged systems, the demand
for battery-powered devices grows, making energy consump-
tion efficiency more critical than ever. Battery production is
resource-intensive and pollutant [1], emphasizing the impor-
tance of maximizing energy efficiency wherever possible. All
development plans [2]–[4] frequently mention clean energy
and efficient utilization, which are essential for our daily inter-
actions with technology. Traditionally, a software developer’s
primary focus has been on developing innovative products and
services, but nowadays, energy efficiency should also be listed
as a top priority.

The pursuit of energy efficiency can start at its foundation
by promoting energy-conscious software development among
developers, as recommended by the Sustainable Software En-
gineering principles [5]. However, integrating energy measure-
ment tools can be challenging, as they often require elevated
system permissions or are incompatible with containerized
environments commonly used to simplify development and
deployment. These limitations may discourage industry profes-
sionals from engaging with this emerging field. By improving
the accessibility of such tools, developers can gain more
precise insights into the energy impact of their software,

allowing them to make informed optimizations and contribute
to more sustainable computing practices.

Automating energy measurements through a service-based
approach eliminates the need for manually running a tool
for each measurement, allowing continuous monitoring in
the background [6]. However, while this architecture offers
practical advantages, its reliability compared to traditional
command-line execution remains uncertain. This paper inves-
tigates whether a service-based implementation of an energy
measurement tool can provide accurate and consistent data,
looking to answer the question “Can a service-based version
of a measurement tool provide accurate data about energy con-
sumption?”. We evaluate this approach using EnergiBridge1,
a tool known for its cross-platform adaptability and language-
agnostic nature, making it an ideal candidate for this study.

This paper first presents relevant background knowledge
on application energy measurement solutions and service
implementations. It then details the development and imple-
mentation of two variations of EnergiBridge services. Follow-
ing this, the services’ measurements are compared to those
obtained through the classic usage of EnergiBridge. Finally,
the challenges encountered during development are discussed,
along with potential improvements for future work.

II. BACKGROUND

A. Energy Profilers

In a computer, energy is consumed by the hardware, but
it is the software that drives this consumption by issuing
operations and managing workloads. Energy profilers (EP)
are tools that monitor and analyze the power consumption of
applications and system components during execution. Energy
profilers (EPs) are tools designed to monitor and analyze
the power usage of software during execution by collecting
metrics such as CPU and GPU utilization, memory access
patterns, and disk activity. Depending on the detected hardware
and operating system, these tools interface with various low-
level frameworks to access real-time energy data. For example,
Intel CPUs provide energy readings through RAPL (Running
Average Power Limit), a hardware feature that exposes con-
sumption data via model-specific registers (MSRs). NVIDIA
GPUs are monitored using NVML (NVIDIA Management
Library), a proprietary API that supports real-time power
tracking. AMD CPUs also expose MSRs for energy metrics,
while AMD GPUs can be monitored via ROCm SMI (System

1Official link of the documentation: https://github.com/tdurieux/EnergiBridge

https://github.com/reglayass/EnergiBridge_RPC
https://github.com/reglayass/EnergiBridge_RPC
https://github.com/tdurieux/EnergiBridge


Management Interface). On macOS, energy usage for both
CPUs and GPUs is accessed through the System Management
Controller (SMC).

When direct hardware interfaces are unavailable, energy
profilers rely on empirical energy models, which estimate
power consumption based on activity counters and pre-
calibrated benchmarks. However, such estimates are often
inaccurate, and have been shown to produce results that can
vary significantly depending on workload and platforms [7].

B. Services

Services are background processes that perform monitoring,
automation, and resource management without requiring direct
user interaction. They can be implemented across multiple
levels, including operating system services (e.g., Linux dae-
mons, Windows services) and application-level services (e.g.,
microservices, API backends). Depending on the application,
services can run continuously or be event-driven, triggering
actions in response to system events or external requests.
Communication between a service and the system is typically
accomplished via system calls, inter-process communication
(IPC) mechanisms, or remote procedure calls (RPC), with
technologies such as gRPC2, JSON-RPC3, and message
queues facilitating efficient data exchange.

III. RELATED WORK

Numerous tools have been created to measure and analyze
software energy consumption. These tools vary in granularity,
platform support, and methodological approach, making the
choice of a profiler highly dependent on specific requirements
such as accuracy, overhead, environment, and integration op-
tions.

A. System-Level Energy Profilers

System-level profilers typically monitor the overall power
draw of hardware components (CPU, GPU, RAM, etc.) and
attribute consumption at a coarse process level. These profilers
often rely on hardware registers like RAPL (Intel) or the
NVIDIA Management Library.

Commercial services such as Kontram’s OverSight4 and En-
ergyCAP’s UtilityManagement5 provide total energy tracking
that is integrated with other proprietary products.

Additionally, there exists a wide range of open-source
alternatives such as EMaaS [8], a peer-to-peer solution with
inexpensive setup that combines hardware-based energy mea-
surements with predictive energy models, while EACOF [9]
centralizes multiple simultaneous measurements, aggregates
results, and communicates data via API calls.

PowerAPI [10] provides an open-source library to measure
per-process energy consumption on Linux. It can combine
direct hardware readings (where available) with model-based

2Official link of the documentation: https://grpc.io/
3Official link of the documentation: https://www.jsonrpc.org/
4https://kontram.fi/en/digital-solutions/oversight-energy-total-energy-

measurement-service/
5https://www.energycap.com/utility-bill-energy-management-software/

estimations to generate real-time measurements. IgProf (Ig-
nominous Profiler), originally developed at CERN for sci-
entific workloads, extended its sampling approach to record
energy usage via Intel RAPL support [11]. All of those tools
do really well in terms of identifying global or system-wide
energy hotspots, yet offer limited granularity for dissecting
energy consumption within specific code segments.

B. Application-Level Energy Profilers

A second group of tools aims to measure energy usage
within a single application or runtime environment. They
typically instrument code, intercept function calls, or rely on
platform-specific libraries (e.g., Java, .NET, Python) to capture
performance counters.

Jalen [12] and Jolinar [13] instrument Java or .NET appli-
cations to estimate function-level energy usage using model-
based inference. pyJoules makes use of Python decorators
and hardware interfaces (RAPL, NVML) to attribute energy
consumption to annotated code segments. Proprietary vendor
tools such as Intel Power Gadget and AMD uProf provide
specialized power metrics for their CPUs, respectively, but are
bound to specific hardware and closed-source APIs.

In the mobile realm, E-MANAFA [14] makes use of models
and instrumentation to offer device-agnostic energy tracking
of Android apps, while Trepn Profiler relies on Qualcomm
hardware interfaces to measure CPU, GPU, and network usage
on Snapdragon devices. These approaches are especially useful
for guiding energy-aware development in mobile ecosystems,
but they introduce constraints regarding the devices to which
they can be applied.

C. Multi-Grained Energy Profilers

While application-level solutions may capture method-level
or thread-level usage, certain tools are explicitly designed to
operate at multiple layers of granularity—from coarse process
measurements down to specific function calls or even instruc-
tion blocks. For instance, jRAPL integrates deeply with Intel
RAPL counters to measure energy usage in Java applications,
providing a flexible API that can be used for high-level or low-
level instrumentation. Similarly, JoularJX extends RAPL-
based monitoring to gather multi-grained statistics on JVM-
based systems, and can be used alongside PowerJoular for
broader system-level context [15].

Also, with the constantly developing area of machine learn-
ing, there has been developed tools like Smaragdine [16],
which enables detailed measurement of energy consumption
in TensorFlow workloads. A novelty in this field, it allows for
measurements from high-level structures up until the smallest
division and individual tensor operations, generating results
plotted into energy distribution diagrams.

Despite the constraints caused by multithreading in deep
learning models, Smaragdine periodically logs timestamps
for each tensor operation, as well as the related device
power consumption. These records are then integrated with
empirical energy models to assign energy consumption to
specific hardware components responsible for carrying out the

2

https://grpc.io/
https://www.jsonrpc.org/
https://kontram.fi/en/digital-solutions/oversight-energy-total-energy-measurement-service/
https://kontram.fi/en/digital-solutions/oversight-energy-total-energy-measurement-service/
https://www.energycap.com/utility-bill-energy-management-software/


tasks. Smaragdine uses TensorFlow’s computation graph to
divide model execution into fine-grained operations, allowing
for precise energy monitoring. This enables developers to
identify which specific processes or layers are the most energy-
intensive, compared to how the other tools would only provide
overall model-wide consumption.

To summarize, these multi-grained profilers allow develop-
ers to switch between lightweight system-wide measurements
and targeted function-level analysis. However, many of these
tools are language-specific (e.g., Java) or rely on specialized
APIs that do not uniformly span across various OS. They
may also prove challenging to integrate into container-based
or microservices environments due to the permissions required
for direct hardware counter access.

D. Rationale for EnergiBridge

Despite the diversity of existing profilers, EnergiBridge sets
itself apart through:

• Cross-Platform, Language-Neutral Design: Imple-
mented in Rust, EnergiBridge supports major OS, using
direct hardware counters when possible, and falling back
otherwise.

• Portability: Its Rust-based architecture compiles into
a lightweight, standalone binary with minimal runtime
dependencies, making it highly portable.

EnergiBridge addresses gaps in cross-platform compatibility
and overall design simplicity. The service-based approach
presented in this paper further expands EnergiBridge’s ap-
plicability to scenarios requiring method-level profiling or
distributed deployment.

IV. STUDY MOTIVATION

EnergiBridge is useful in aiding developers towards sus-
tainable code. However, at its current state as of this report,
it operates by passing execution commands of the application
being measured to it. An example terminal command depicting
this is as follows:

./EnergiBridge python3 ./test_app.py

In the context of EnergiBridge, the main purpose of passing
execution commands is to indicate when the energy measure-
ments should start being collected, and subsequently when the
energy measurements should stop being collected. The former
is right before the commands are executed, and the latter is
after the commands have been successfully executed and have
terminated with some exit code.

The benefits of running EnergiBridge as a service are as
follows:

1) Fine-Grained Potential: It allows fine-grained measure-
ments for sequential code executions without requiring
the application under measurement to terminate before
collecting results. Lightweight RPC calls could facilitate
this by determining the time window in which En-
ergiBridge should collect readings. This enables energy
measurements to be easily integrated with large code
bases.

2) Container Support: The application execution process is
decoupled from the energy measurement process by hav-
ing EnergiBridge as a service. EnergiBridge at its current
state cannot be run within a containerized environment.
Tools such as Docker and Kubernetes isolate containers
from host hardware for security, reproducibility, and easy
setup. However, energy measurement requires system-
level function calls on the host machine to collect relevant
CPU and GPU data, which is impossible to do directly
from a containerized environment. Having EnergiBridge
as a service can circumvent this limitation by listening
to signals or requests from a containerized application to
start or stop measurements.

3) CI/CD friendliness: As a CLI-based tool combined with
its portability, EnergiBridge as a service can be easily
integrated into automated workflows. A workflow runner
machine could have EnergiBridge as a service running
in the background and pulling images to execute some
form of automated code test in the resulting container.
The energy measurements collected on the machine could
then be processed and analyzed.

In an example scenario, if we want to compare the energy
efficiency of different frameworks for data stream aggregation
in a backend server implementation, we can annotate or
decorate two equivalent functions—each using a different
framework but producing the same aggregation result—and
directly measure their respective energy consumption either
via live testing or unit testing with the EnergiBridge service
running in the background. In contrast, to do so with the
original EnergiBridge would require extracting the relevant
code as isolated scripts to be tested, making it less convenient.

V. ARCHITECTURE

This section presents the architectures of two service im-
plementations for EnergiBridge: one in Rust and another in
C++. These programming languages were chosen as they are
compiled to machine code. Hence, we conjecture they would
introduce minimal energy consumption overhead while run-
ning as a service compared to other programming languages.
The services have a similar core design: a client asks the server
to begin a measurement session, which could be immediately
before the execution of a particular process or a function call.
Once the execution is completed, the client signals the server
to conclude the measurement session, to which the server will
respond with the measurements collected corresponding to the
session.

Our implementations in the repository included safeguards,
such as allowing only one measurement session to be in
progress at a time. However, we will only elaborate on their
core functionality in this section.

A. Rust-based service

The Rust-based service is a fork of EnergiBridge. A server
is launched and listens on a specified port, awaiting RPC
requests over TCP. The client (or software under measurement)
interacts with the server via the JSON-RPC protocol to initiate

3



measurements. It sends a start_measurements request to indi-
cate that the server should start collecting energy measurement
data from the system. This prompts the server to spawn a
worker thread to perform the measurement collection. When
stopping, the client sends a stop_measurements request to
the server, which signals the worker thread to conclude its
measurement taking, and the server responds with the recorded
measurements in JSON. A simplified communication diagram
is depicted in Figure 1.

Fig. 1: Diagram of communication steps to signal a measure-
ment start and obtain data back in Rust

B. C++ service

The C++ service is similar to the Rust service, but still uses
EnergiBridge under the hood. The service calls upon EnergiB-
ridge rather than having its energy measurement functionality
natively baked into the code. When the service runs, a server
is launched and listens on a port for the start_measurements

request. Upon receiving the request, EnergiBridge is executed
with the sleep infinite command, to ensure that it does not
terminate prematurely. When a stop_measurements request is
received, EnergiBridge is terminated with the SIGTERM signal,
and the collected results are returned in JSON format. The
C++ server converts the data collected by the underlying
EnergiBridge from CSV to JSON, which is returned to the
client as a server response.

This implementation is “simpler” than the Rust-based ser-
vice as it does not require managing a separate thread to
collect energy measurements, and it uses the output of En-
ergiBridge to create the output for the RPC server. The C++
service implementation is a wrapper, unlike the Rust service
implementation, which is a dedicated service.

C. Usage

As each service is an RPC server, these RPC calls can be
made in many ways. For our study, we created a decorator
in Python that sends the RPC requests right before a function
call and then sends a request to stop measurements once the
function is completed. An example of its usage can be seen
in Listing 1.

When the decorated function is called, the decorator first ob-
tains the current process ID and sends a start_measurements

request to a specified port. This request includes the PID

Fig. 2: Diagram of communication steps to signal a measure-
ment start and obtain data back in C++

@energibridge_rpc(port, exp)
def fib(n: int = 1) -> int:

return 1 if n == 0 or n == 1 else fib(n - 1)
+ fib(n - 2)

Listing 1: Example implementation in Python

and function name, allowing the server to determine which
function is being measured and the process from which the
function originates. To avoid duplicate start_measurements

calls for recursive functions, the decorator keeps track of
which functions are currently being measured. When the
function is within the tracking set, the decorator does not
intercept it, and it behaves normally. After the function finishes
or crashes, the decorator sends a stop_measurements request
to stop the measurement, removes the function from the
tracking list, and prints the measurement results in a formatted
JSON output of the columns that the original EnergiBridge
implementation provided.

Since both services use the RPC-JSON protocol, it al-
lows for language-agnostic implementations of measurements
through decorators, annotations, attributes, or manual RPC
calls before a method is executed – the point being that the
services provide for granular, method-specific or even code
block-specific energy measurements rather than requiring an
entire application to be run like with classic EnergiBridge.

VI. ABLATION STUDY

To validate the viability of having EnergiBridge as a service,
we perform an ablation study to compare the differences in
energy usage between the service-based versions of EnergiB-
ridge and the ‘classic’ EnergiBridge. This study consists of
two parts. In the first part, we compare the difference in mean
energy consumption between classic EnergiBridge, the C++
service, and the Rust services with a sleep function of 10
(sleep(10)) and 20 seconds (sleep(20)). The second part
functions the same, except the services and classic EnergiB-
ridge are tested with a recursive function that computes the
Fibonacci sequence for n = 10, n = 35, and n = 40.

Both parts will result in energy consumption values. How-
ever, the objectives of both parts are different. In the sleep

4



experiment, the aim is to compare the overhead that the
three different versions of EnergiBridge introduce to energy
consumption testing, as the experiments involved are to test
an idle machine with no code running. This is important as
we want to mitigate as much of it as possible in order not
to give skewed results to much bigger tests. The Fibonacci
experiment aims to mirror a real-life application of these tools
by measuring the energy consumption of a specific function.
From the results of the experiments in this part, a conclusion
can be made on the practicality of using one service over the
other.

A. Methodology

The tools were tested with a Python script running a
sleep function and the Fibonacci sequence function using the
decorator outlined in Section V-C. For the classical version,
the executable is run with the Python script containing the
Fibonacci or sleep function as the argument.

We performed our experiments per the /py/experiment.py

script in our repository. We test the two types of functions on
different occasions, i.e., one session for sleep(n) and one for
fib(n). However, the setup is the same; we repeat each ex-
periment for 30 iterations with randomized ordering to ensure
statistical validity. During the start of a session, we perform a
warm-up phase by running a recursive Fibonacci function with
n = 30. In between each experiment, we perform a cool-down
phase of 30 seconds. When an experiment involves a service,
the service is launched, followed by a 5-second resting period
before executing the function, to account for any energy usage
due to the initialization of the service.

After the energy consumption is obtained for each experi-
ment, we pre-process them by only retaining readings with a
Z-score of less than 2, a conventional threshold, to eliminate
possible outliers.

B. Results

1) Sleep: We identified that the readings obtained follow
a normal distribution for the experiments involving sleep(n)

. This was indicated by performing the Shapiro-Wilk test on
them, which yielded p-values above 0.05, as shown in Table I.

Subsequently, we generated a violin plot for each experi-
ment, as shown in Figure 3, and tabulated their corresponding
mean energy consumption values in Table II.

Rust C++ Classic

Sleep(10) 0.301927 0.539135 0.863428
Sleep(20) 0.583192 0.122816 0.686482

TABLE I: P-values after applying the Shapiro-Wilk test on the
samples of each sleep(n) experiment and their corresponding
measurement tools.

To identify the statistical significance between the difference
in energy consumption measurements between the services
and classic EnergiBridge, we performed Welch’s t-test for
the classic EnergiBridge against each of the services for

Fig. 3: Violin plots of the energy consumption on sleep(n)

when measured with different measurement tools.

Rust C++ Classic

Sleep(10) 10.900 10.927 10.343
Sleep(20) 21.117 21.373 20.980

TABLE II: Mean energy consumption in Joules per service
and method for each sleep(n).

Rust C++

Sleep(10) 1.28217e-08 2.09002e-10
Sleep(20) 5.18794e-64 0.0167908

TABLE III: Welch’s t-test results comparing classic EnergiB-
ridge with services for each sleep(n)

each sleep(n). The resulting P-values obtained are shown in
Table III.

2) Fibonacci: We identified that the readings obtained
largely demonstrate non-normal behavior for the experiments
involving fib(n). This was indicated through the Shapiro-
Wilk test, which yielded mostly p-values under 0.05, as shown

5



in Table IV.

Rust C++ Classic

Fib(10) 1.27111e-05 0.000463756 0.686482
Fib(35) 0.0883172 0.0264623 0.00040684
Fib(40) 0.0014801 0.00282737 9.96085e-05

TABLE IV: P-values after applying the Shapiro-Wilk test on
the samples of each fib(n) experiment and their correspond-
ing measurement tools.

Similarly, we generated a violin plot for each experiment, as
shown in Figure 4, and tabulated their corresponding median
energy consumption values in Table V. We observe the median
here as we have identified that most experiments presented
non-normal readings.

Rust C++ Classic

Fib(10) 1.31677 1.27066 6.28159
Fib(35) 92.46469 94.08493 102.78302
Fib(40) 975.96390 958.66568 1091.70334

TABLE V: Median energy consumption in Joules per service
and method for each sleep(n)

To identify the statistical significance between the differ-
ence in energy consumption measurements, we performed the
Mann-Whitney U test for each pair of measurement tools used
for each fib(n). The resulting P-values obtained for each fib

(n) can be found in Table VI.

Rust C++ Classic

Fib(10)
Rust - 0.368 2.077e-10
C++ 0.368 - 1.404e-10
Classic 2.077e-10 1.404e-10 -

Fib(35)
Rust - 0.784 4.573e-09
C++ 0.784 - 3.497e-09
Classic 4.573e-09 3.497e-09 -

Fib(40)
Rust - 0.340 0.0003
C++ 0.340 - 5.607e-05
Classic 0.0003 5.607e-05 -

TABLE VI: Mann-Whitney U-test p-values for each fib(n)

per service

VII. DISCUSSION

In this section, we will elaborate upon our results from the
previous section. We divide this section into two parts; first,
we will elaborate on the results relating to the experiments
with sleep(n), next, we will discuss the results relating to
the experiments with fib(n).

A. Sleep

From Figure 3, we observe that for sleep(10), running
classical EnergiBridge consumes less energy than the services.
The difference in energy consumption can be explained by the
overhead introduced by the service to run an RPC server in the
background, listening for requests. However, this difference

Fig. 4: Violin plots on the energy Consumption on fib(n)

when measured with different measurement tools.

in energy consumption becomes smaller for sleep(20). We
illustrate this in Table VII.

Although the p-values from running the t-tests shown in
Table III suggest that these differences are statistically signifi-
cant, it should be noted that an overhead of less than 0.6 Joules

6



Rust C++ Classic

Sleep(10) 10.900 (+0.557) 10.927 (+0.584) 10.343
Sleep(20) 21.117 (+0.137) 21.373 (+0.393) 20.980

TABLE VII: Mean energy consumption in Joules per service
and method for each sleep(n), with the difference to classic
EnergiBridge annotated.

in practice will not impact real-life energy measurements of
applications much more than measurement noise, environ-
mental factors, or system-level fluctuations. Additionally, as
demonstrated by the reduced overhead percentage in the sleep

(20) measurements, this energy difference becomes propor-
tionally smaller as the duration of operations increases, making
it even less relevant for typical application workloads, which
often involve more complex and longer-running operations
than simple sleep calls.

B. Fibonacci

The non-normal behavior of the majority of our experiment
data involving fib(n) could be addressed by the nature
of running deep-recursive functions, such as our Fibonacci
implementation in Listing 1. Such functions leave a large
memory footprint. The memory management, garbage col-
lection, or even internal caching in Python could introduce
irregular energy consumption patterns, yielding non-normal
energy measurement readings.

From Figure 4, we observed that classic EnergiBridge pro-
duced larger energy consumption readings than the services.
Additionally, the Mann-Whitney U test on all three instances
of fib(n) in Table IV suggests that these differences were
statistically significant.

We hypothesize that this difference exhibited by using
classic EnergiBridge compared to the services was due to the
initialization of the Python interpreter and the possible cleanup
it performed upon termination. Although the experiments all
run on scripts containing the corresponding fib(n) function,
the time window when measurements are taken differs. The
services take measurements from the start of the function
call and stop right after the function is executed. Classic
EnergiBridge, however, requires the script to be passed to
it as an argument, which means that it takes measurements
from the start of the script being executed until the script
terminates. Thus, with our hypothesis explaining the difference
in energy consumption measured, having EnergiBridge as a
service demonstrates its capability to produce finer-grained
function-level energy measurements.

Lastly, comparing our C++ and Rust implementations of
EnergiBridge as a service, Table VI indicates no statistical
significance in the difference between their collected readings.
This suggests that utilizing either tool would produce similar
readings. However, in practice, we recommend the Rust imple-
mentation as it compiles into a standalone binary. Conversely,
the C++ implementation still relies on an accompanying
EnergiBridge binary, making the Rust implementation more
portable.

VIII. LIMITATIONS & FUTURE WORK

While the study provides promising and valuable insights
into measuring software energy consumption, several limita-
tions remain that open avenues for future improvement. First,
the C++ service relies on Unix-specific system commands to
interface with EnergiBridge for starting and stopping measure-
ments. Although Windows-compatible alternatives for those
commands exist, adapting the current codebase for cross-
platform support would require additional work. A potential
solution would involve detecting the operating system at
runtime and adjusting command execution accordingly.

Another limitation comes from using service-based tools,
where we added a one-second delay before starting the method
and another after finishing the measurement. This gives the
server enough time to initialize EnergiBridge and record the
final values properly. In the C++ implementation, we force-
fully stop the measurements of EnergiBridge by providing the
SIGTERM signal. Hence, a slight delay must be introduced to
account for any remaining energy consumption. While this
two-second delay is small, it should still be considered when
analyzing the performance and energy results.

Lastly, due to EnergiBridge’s current usage through either
terminal-based commands or service, one might consider
wrapping the tool into a package manager to streamline
setup, making it more accessible for developers to integrate
into automated benchmarking or with other tools created to
complement it.

IX. CONCLUSION

To conclude, this paper compared the accuracy of energy
measurements between the classic usage of EnergiBridge and
two service-based implementations (in Rust as a dedicated
service and in C++ as a wrapper) that enable client-server
communication via JSON-RPC. By evaluating all three ap-
proaches across two environments, idle running and measuring
a simple recursive function, we found that a service-based
design can offer a more effective alternative to the standard En-
ergiBridge usage, as it introduces finer-grained measurements
with negligible additional overhead during the process. This
opens the door for more practical and scalable use; looking
ahead, EnergiBridge as a service could be integrated into
CI/CD pipelines to audit an application’s energy consumption
and generate fine-grained reports for specific tasks within an
executable.

REFERENCES

[1] Greenly, “The harmful effects of our lithium batteries,” 2025, accessed:
March 10, 2025. [Online]. Available: https://greenly.earth/en-gb/blog/
industries/the-harmful-effects-of-our-lithium-batteries

[2] European Commission, “Energy and the green
deal,” 2024, accessed: 2024-03-06. [Online]. Available:
https://commission.europa.eu/strategy-and-policy/priorities-2019-2024/
european-green-deal/energy-and-green-deal en

[3] Google, “Google sustainability initiatives,” 2024, accessed: 2024-03-06.
[Online]. Available: https://sustainability.google/

[4] United Nations, “Sustainable development goals,” 2024, accessed: 2024-
03-06. [Online]. Available: https://www.un.org/sustainabledevelopment/
sustainable-development-goals/

7

https://greenly.earth/en-gb/blog/industries/the-harmful-effects-of-our-lithium-batteries
https://greenly.earth/en-gb/blog/industries/the-harmful-effects-of-our-lithium-batteries
https://commission.europa.eu/strategy-and-policy/priorities-2019-2024/european-green-deal/energy-and-green-deal_en
https://commission.europa.eu/strategy-and-policy/priorities-2019-2024/european-green-deal/energy-and-green-deal_en
https://sustainability.google/
https://www.un.org/sustainabledevelopment/sustainable-development-goals/
https://www.un.org/sustainabledevelopment/sustainable-development-goals/


[5] Microsoft, “The principles of sustainable software engineering,” 2024,
accessed: 2024-03-06. [Online]. Available: https://learn.microsoft.com/
en-us/training/modules/sustainable-software-engineering-overview/

[6] D. C. Schmidt, “A domain analysis of network daemon design
dimensions,” Washington University, Department of Computer Science,
Tech. Rep. WUCS-94-33, 1994, accessed: March 10, 2025. [Online].
Available: https://www.cs.wm.edu/∼dcschmidt/PDF/daemon-design-94.
pdf

[7] E. Jagroep, J. M. E. M. van der Werf, S. Jansen, M. Ferreira, and
J. Visser, “Profiling energy profilers,” in Proceedings of the 30th Annual
ACM Symposium on Applied Computing, ser. SAC ’15. New York,
NY, USA: Association for Computing Machinery, 2015, p. 2198–2203.
[Online]. Available: https://doi.org/10.1145/2695664.2695825

[8] L. Feenstra and P. H. J. Kelly, “Emaas: Energy measurements as a
service,” arXiv preprint, vol. arXiv:1902.02605, 2019, accessed: March
10, 2025. [Online]. Available: https://arxiv.org/abs/1902.02605

[9] D. Barreto, L. Barth, A. Sobe, and T. Fahringer, “Eacof: A framework
for energy-aware computing,” arXiv preprint, vol. arXiv:1406.0117,
2014, accessed: March 10, 2025. [Online]. Available: https://arxiv.org/
abs/1406.0117

[10] L. Bourdon, L. Lefèvre, A.-C. Orgerie, and J.-M. Pierson,
“Powerapi: A software library to monitor the energy consumed at
the process-level,” ERCIM News, no. 92, 2013, accessed: 2025-
04-03. [Online]. Available: https://ercim-news.ercim.eu/en92/special/
powerapi-a-software-library-to-monitor-the-energy-consumed-at-the-process-level

[11] CERN, “Igprof: The ignominous profiler,” 2024, accessed: 2025-04-03.
[Online]. Available: https://igprof.org

[12] A. Noureddine, R. Rouvoy, and L. Seinturier, “Monitoring energy
hotspots in software,” in Proceedings of the 2015 IEEE/ACM 7th
International Workshop on Software Engineering for Systems-of-Systems
and Software Ecosystems (SESoS). IEEE, 2015, pp. 62–68. [Online].
Available: https://doi.org/10.1109/SESoS.2015.15

[13] A. Noureddine, L. Seinturier, and R. Rouvoy, “Jolinar: A tool for
multi-resource energy profiling of software,” Software: Practice and
Experience, vol. 46, no. 11, pp. 1501–1530, 2016. [Online]. Available:
https://doi.org/10.1002/spe.2386

[14] R. Rua, M. Couto, and J. P. Cunha, “E-manafa: A device-independent
model-based profiler for energy analysis of android apps,” in
Proceedings of the 37th IEEE/ACM International Conference on
Automated Software Engineering (ASE). IEEE, 2022, pp. 1–12.
[Online]. Available: https://doi.org/10.1145/3551349.3556922

[15] A. Noureddine et al., “Powerjoular and joularjx: Multi-level energy
profiling of java applications,” SoftwareX, vol. 19, p. 101186, 2022.
[Online]. Available: https://doi.org/10.1016/j.softx.2022.101186

[16] Y. Wang, Y. Guo, X. Li, Y. Bao, C. Xu, and W. Chen, “Tensor-aware
energy accounting,” in Proceedings of the 29th ACM International
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS). New York, NY, USA: Association
for Computing Machinery, 2024, p. 662–677. [Online]. Available:
https://doi.org/10.1145/3597503.3639156

8

https://learn.microsoft.com/en-us/training/modules/sustainable-software-engineering-overview/
https://learn.microsoft.com/en-us/training/modules/sustainable-software-engineering-overview/
https://www.cs.wm.edu/~dcschmidt/PDF/daemon-design-94.pdf
https://www.cs.wm.edu/~dcschmidt/PDF/daemon-design-94.pdf
https://doi.org/10.1145/2695664.2695825
https://arxiv.org/abs/1902.02605
https://arxiv.org/abs/1406.0117
https://arxiv.org/abs/1406.0117
https://ercim-news.ercim.eu/en92/special/powerapi-a-software-library-to-monitor-the-energy-consumed-at-the-process-level
https://ercim-news.ercim.eu/en92/special/powerapi-a-software-library-to-monitor-the-energy-consumed-at-the-process-level
https://igprof.org
https://doi.org/10.1109/SESoS.2015.15
https://doi.org/10.1002/spe.2386
https://doi.org/10.1145/3551349.3556922
https://doi.org/10.1016/j.softx.2022.101186
https://doi.org/10.1145/3597503.3639156

	Introduction
	Background
	Energy Profilers
	Services

	Related Work
	System-Level Energy Profilers
	Application-Level Energy Profilers
	Multi-Grained Energy Profilers
	Rationale for EnergiBridge

	Study Motivation
	Architecture
	Rust-based service
	C++ service
	Usage

	Ablation Study
	Methodology
	Results
	Sleep
	Fibonacci


	Discussion
	Sleep
	Fibonacci

	Limitations & Future Work
	Conclusion
	References

