
Measuring the Energy Consumption of Docker Images for ML Workloads

Ana T, erna, Andrei-Iulian Vis, oiu, Lucian Tos, a, Monica Păun
Delft University of Technology

Abstract
The growing adoption of Artificial Intelligence
across all industries has led to concerns over its
carbon footprint. Energy consumption is particu-
larly important during the inference phase, which
is often run continuously and at scale. Docker
containerization is the industry standard for de-
ploying ML workloads due to its flexibility and
portability, but the specific impact of image con-
figurations on energy efficiency has not been ex-
plored yet. This study addresses this gap and inves-
tigates how different image configurations affect
consumption during inference. We use a ResNet-
50 image classification model to perform inference
on randomly generated images of various resolu-
tions, while measuring energy consumption with
EnergiBridge under controlled conditions. Five
Docker setups with increasing base image com-
plexity ranging from base OS images to optimized
NVIDIA containers were evaluated. We have found
an indication that integrated images perform bet-
ter than manually installed ones. However, some
pre-built images are substantially larger than oth-
ers, and this is also a factor to take into account.
For future research directions, we recommend fur-
ther benchmarks on varying hardware to generalise
the results, and exploration into which Docker lay-
ers affect consumption the most.

1 Introduction
Artificial Intelligence (AI) has rapidly transformed industries
by enabling automotive decision-making, advanced pattern
recognition and predictive analytics. However, the increased
adoption of AI comes with a significant concern: its en-
ergy footprint. Training large-scale models requires substan-
tial computational power, often running for days or weeks
on high-performance hardware, consuming vast amounts of
electricity. As a result, these models are costly to train and
develop both financially but also environmentally. For in-
stance, training deep-learning models can produce as much
carbon footprint as flights do while traversing continents [1].
While the training part of AI models has received much at-
tention in energy consumption research [2], inference, the

stage where models are deployed and used to generate real-
time predictions, also contributes to this footprint, particu-
larly when scaled across multiple devices [3].

Machine Learning (ML) inference workloads are widely
used in various applications from ranking systems to au-
tonomous driving, where models generate predictions based
on the patterns and knowledge gained during the training
phase. Unlike training, inference is often performed continu-
ously, leading to a cumulative energy demand that can exceed
the cost of training. Therefore, it is essential to explore strate-
gies for minimizing both the cost and energy consumption of
this phase. This study focuses on a specific aspect of this
challenge: understanding the impact of containerization on
the energy efficiency of ML inference workloads.

Containerization is a widely adopted approach for deploy-
ing ML workloads due to its portability, scalability of re-
sources and ease of configuration [4]. Specifically, contain-
ers package ML models, along with the necessary dependen-
cies and hardware configurations, which consequently, allow
developers to achieve consistency in resource management
across different computing environments. However, while
containerization offers significant benefits for deployment ef-
ficiency, it also introduces additional computational overhead
due to factors such as resource isolation and container run-
time processes that occur while a workload is running. These
factors can impact execution time, CPU usage, and memory
consumption, all of which influence the overall energy effi-
ciency of an ML workload.

Among the various containerization technologies avail-
able, Docker has emerged as one of the most widely used
tools for deploying ML workloads. This popularity is due
to its ability to streamline the deployment process, enabling
the creation of lightweight, portable containers that can run
across diverse computing environments. However, while
Docker facilitates the management of dependencies and of-
fers scalability, the specific impact of Docker image config-
urations on the energy efficiency of ML workloads remains
underexplored. With these aspects in mind, we raise the fol-
lowing research questions:

• RQ1: How do different Docker images affect the energy
consumption of inference ML workloads?

• RQ2: What are the configurations in Docker images that
affect energy consumption the most?



This study aims to empirically measure the energy con-
sumption of different Docker images when running an ML
inference workload. For that, we will conduct an analysis of
the execution time and total energy consumption of several
Docker images specifically used for ML workloads. Through
this analysis, we seek to determine whether the choice of
Docker image influences energy consumption and, if so,
which configurations contribute to higher resource costs in AI
deployments. Lastly, this study aims to provide guidance for
developers and research in improving the deployment aspect
of ML workloads while also addressing the growing concern
of AI’s environmental impact.

The paper is structured as follows. Section 2 reviews
prior work investigating the energy efficiency of deployment
frameworks for ML workloads. The chosen methodology
will be presented and justified in Section 3. Results will be
presented in Section 4, with further discussions in 5. Section
6 will present the final conclusions of the study.

2 Background & Related Work
This section presents a brief overview of prior research that
investigates the performance and energy efficiency of various
deployment tools and frameworks for ML workloads.

Docker containers1 have emerged as a popular solution for
managing and executing ML workloads due to their ability
to package all required dependencies into a portable and re-
producible environment. A Docker container runs based on
an image defined in a Dockerfile, which contains specifica-
tions such as the base operating system, libraries, and appli-
cation code. The efficiency of a Docker image depends on the
choices made during the configuration phase and certain de-
cisions can lead to larger, more complex images that consume
additional energy at runtime [5].

Although containerization introduces lower overhead com-
pared to full virtualization, it still imposes an energy cost
compared to bare-metal deployment. Studies have explored
how Docker-based workloads consume energy under differ-
ent conditions. Warade et al. [6] measured the energy foot-
print of various Docker containers running common web and
database workloads. The choice of a base image for a Docker
container was also shown to have a significant impact on
the energy consumption when tested on Redis workloads [7].
Their findings highlight the significant energy consumption
of Dockerized applications, particularly under high load con-
ditions, and emphasize the need for energy-aware optimiza-
tion strategies.

Based on the aforementioned studies, a non-trivial aspect
of building efficient Docker images is the selection of the base
image. As shown in Figure 1, the starting point for building
a Docker image is the choice of the base image. The base
image is usually imported from DockerHub2 (e.g., ubuntu,
node, python) and provides an operating system (OS) or pre-
installed environment applications. The choice of the base
image significantly impacts the energy consumption in sev-
eral ways. First, larger base images contribute to longer start-
up times, consuming more energy during initialization. Some

1http://docker.com/
2https://hub.docker.com/

base images also include background services or dependen-
cies, which further increases the energy consumption. A re-
cent study [8] analyzed various OS base images (i.e., Debian,
Ubuntu, CentOS, and Alpine) on several workloads (e.g.,
web-based, ML, DB-based and gaming workloads) and found
out that there is a significant difference in energy consump-
tion between base images for most of the workloads. For
instance, some base images perform efficiently for one work-
load but consume significantly more time and energy for other
types of workloads. This shows that the optimal choice of the
base image depends on the containerized workload, however,
there has been little research done in analyzing how various
base images impact the energy consumption specifically for
ML workloads.

Figure 1: The components that are used for setting up and running
a Docker container where each component can contribute to the en-
ergy consumption of dockerized workloads.

Prior research has examined the impact of containeriza-
tion on ML workloads from different angles. Alizadeh and
Castor [9] investigated whether the choice of an ML frame-
work influences inference energy consumption but found no
strong correlation. Park et al. [10] analyzed how resource
contention in multi-tenant environments affects deep learning
performance and efficiency, identifying potential degradation
due to container resource conflicts. Hampau et al. [11] com-
pared multiple deep learning deployment strategies and found
that dockerized workloads consumed more energy than other
approaches due to the overhead introduced by the container-
ization layer.

Containerization remains the industry standard for deploy-
ing ML models due to its flexibility and portability, however,
it is important to first understand its energy impact in detail.
Currently, there remains a significant research gap in under-
standing the exact factors influencing the energy consumption
of containerized workloads and how to optimize these envi-
ronments efficiently. Warade et al. [6] further underscore this
concern by demonstrating that even common Docker contain-
ers exhibit non-trivial energy consumption patterns. Their
work provides a foundation for future research aimed at op-
timizing Docker deployments for energy efficiency, particu-
larly in ML workloads where compute-intensive tasks exac-
erbate power consumption.

While these studies contribute valuable insights into the en-
ergy consumption of workloads under different deployment
environments, a notable gap remains in understanding how
specific Docker configurations influence energy efficiency.
Few studies have directly addressed the relationship between
Docker image configurations and the energy consumption of
ML inference workloads, which is important for understand-
ing the main picture of the energy footprint of containerized
AI deployments.

http://docker.com/
https://hub.docker.com/


3 Methodology
In this section, we outline the method taken to address the
questions exposed in Section 1. The approach relies on con-
structing multiple docker images for an ML workload, which
are later subjected to energy measurement.

To measure the energy consumption of a machine learn-
ing workload, we used a standard deep learning pre-trained
model for image classification, ResNet-50, part of the Resid-
ual Networks family introduced by He et al. [12]. The fol-
lowing experiment was designed based on the study of deep
learning benchmarks as documented in the AI Power Meter
3.

The first step of the benchmark is to choose between run-
ning the experiment on either the GPU or CPU. However, for
the purposes of this experiment, the aim was to run the bench-
mark on an NVIDIA GPU. For the study of energy consump-
tion in inference, we used a pre-trained ResNet-50 model
from Pytorch 4. We then attempt to perform inference with
this model on images with resolutions from 256x256 up to
2048x2048. For each image resolution, we generate a purely
random 3-color image, which we then normalize according to
PyTorch’s guidance for the ResNet50 model. While we could
have used a pre-existing dataset, like ImageNet 5, we have
opted for generating random colored images instead. This
option is also used by AI Power Meter, and it can help de-
termine the worst-case energy consumption. This is because
real images contain structured patterns that can activate the
deep neural network in predictable ways. While this is not
necessarily indicative of real-world use case scenarios, the
aim of this study is to determine the energy consumption of
different Docker images using the same workload, therefore,
a worst-case scenario is more suitable.

After normalizing, we perform inference for a set amount
of times on this image:

• 400 times for the image with resolution 256x256.
• 200 times for the image with resolution 512x512.
• 133 times for the item with resolution 1024x1024.
• 100 times for the item with resolution 2048x2048.

This amount of iterations for each image has been chosen for
computational reasons, as the GPU time increases exponen-
tially with the resolution of the image.

The experiment was run with five different setups for the
Docker images. The main distinctions between these were
the base image and the package installation methods. The five
images are built up based on increasing complexity, having
the following configurations:

• Ubuntu: For the base image we started with Ubuntu
22.04 upon which Python 3.10, CUDA 12.6 and Py-
Torch 2.6 were installed. Uncompressed size is 9.11GB.

• Python: For this Docker image, we have used the base
image to be Python 3.10, installing after that CUDA
12.6 and PyTorch 2.6 manually. Uncompressed size is
9.95GB.

3https://greenai-uppa.github.io/AIPowerMeter/index.html
4https://pytorch.org/hub/nvidia deeplearningexamples resnet50/
5https://www.image-net.org/

• NVIDIA CUDA: This builds on top of the nvidia/cuda
base image which comes with the CUDA toolkit pre-
installed. Then we installed Python 3.10 and PyTorch
2.6. It has a size of 12.91GB.

• PyTorch CUDA: The base image is pytorch/pytorch
which comes with all our required packages installed.
Resulting size is 9.62GB

• NGC PyTorch (nvcr-base): This is an optimized im-
age from NVIDIA’s NGC catalog with all packages al-
ready installed. This is an enterprise-grade image that
NVIDIA recommends for production workloads. It is
also the largest image, at 40.86GB.

These five Docker images and their corresponding docker
files were designed in this way as we wanted to explore the
impact of having to manually install software and packages
on top of a bare base image and compare this to gradually
simpler images where the required components come prein-
stalled and configured with the base image.

Firstly, the image built with the Ubuntu base image was
chosen, as it starts off from a very basic image with none of
the components we needed installed and serves as the start-
ing point of our experiments. This gave us complete control
over the installation method of the required packages and li-
braries, which can help identify if packages installed manu-
ally lead to better efficiency as opposed to packages coming
pre-installed in base images. While we could have opted for
even simpler images like Alpine Linux or RHEL UBI, Ubuntu
is at the foundation of the other 4 base images we have used.
Therefore, this choice eliminates some variability from our
experiments.

The next four images are designed so that they come with
gradually more components pre-installed in the base image,
reducing the amount of manual installations, which will help
us identify which component brings the most efficiency gains
depending on its installation method. Therefore, the image
based on the Python base image aims to check if a manual
installation of Python is more efficient or not than a prebuilt
base image. The same approach is followed with the image
based on NVIDIA CUDA, which will help us verify whether
a manual installation of CUDA is more inefficient.

Lastly, the image based on PyTorch CUDA is the most
comprehensive and comes with all the components pre-
installed. This eliminates any manual installation, and is
therefore a good comparison point with the first image in our
experiment, which only contains manual installations. As
an extra addition, we have tested the more optimized ver-
sion from the NVIDIA NGC catalog, which also comes pre-
installed with all the components, but is advertised as an
enterprise-grade image. This can help us compare the two and
identify whether there are certain optimizations that NVIDIA
developed in their base images.

To measure the energy consumption of Docker images, we
utilized the EnergyBridge 6 tool for power measurement and
applied the experiment framework depicted in Figure 2 to en-
sure consistent and controlled execution conditions. Each ex-
periment began with a one-minute CPU-intensive warm-up

6https://github.com/tdurieux/EnergiBridge

https://greenai-uppa.github.io/AIPowerMeter/index.html
https://pytorch.org/hub/nvidia_deeplearningexamples_resnet50/
https://www.image-net.org/
https://github.com/tdurieux/EnergiBridge


phase, designed to stabilize processor behavior and minimize
variability in energy measurements. Following the warm-up,
the actual dockerized workload was executed within a sub-
process, allowing precise monitoring of energy usage without
interference from external system processes. To ensure statis-
tical reliability, each Docker image was tested across 30 in-
dependent runs, with one-minute breaks between executions
to allow the system to return to a baseline state. Moreover,
we addressed various variables such as stable room tempera-
ture and internet connection and throughout the experiment,
the computer was always plugged into a power source with
its brightness lowered.

For reproductibility purposes, the setup can be found in our
GitHub repository7.

Figure 2: Energy measurement framework utilized for running and
recording the metrics related to the energy consumption of various
Docker images.

3.1 Harware Setup
All experiments were conducted on a machine running the
Linux operating system (Ubuntu 24.04.2 LTS). The hardware
configuration included an Intel Core i5-6500 quad-core pro-
cessor, 16 GiB of RAM, and an NVIDIA GeForce GTX 970
GPU. Each experiment was executed via a Python script,
which invoked the necessary commands using the subpro-
cess8 module to ensure isolation and a controlled execution
environment.

4 Results
In this analysis, we first performed the Shapiro-Wilk normal-
ity test to assess whether the energy consumption data for

7https://github.com/anaterna/sustainablesoftware/tree/main/
project2

8https://docs.python.org/3/library/subprocess.html

each variant followed a normal distribution. Upon examina-
tion, we found that not all variants were normally distributed.
Consequently, we opted to conduct the Kruskal-Wallis test to
determine if there were any significant differences between
the groups of non-normally distributed data. The p-value
from this test was close to zero, indicating a significant differ-
ence across the groups. However, this test only indicated that
differences exist but did not specify which groups differed
from each other. To identify the specific pairs of groups with
significant differences, we applied Dunn’s test as a post-hoc
analysis. We chose Dunn’s test over Tukey’s HSD because
of the non-normal distribution of some variants, making it a
more appropriate choice for non-parametric data. After con-
firming that there were significant differences between the
groups, we used Cliff’s Delta to measure the magnitude of
these differences. Additionally, we computed standard de-
scriptive statistics, including the mean, median, and standard
deviation, which provide useful insights into the central ten-
dency and spread of the data. While the mean offers an over-
all average, the median gives a better representation of the
central value for skewed distributions, helping us understand
the data better.

The energy consumption results are shown in Table 1 and
Figure 3, with execution times presented in Table 3 and Fig-
ure 4. We can notice that pytorch-base had the lowest energy
consumption with moderate variance, followed by the cuda-
base image, which also contains an outlier in its data. We
also can see that the execution time plot in Figure 4 of the
ResNet-50 workload has the same pattern as the one of the
energy consumption.

Variant Median Mean σ

pytorch-base 37347.75 37432.56 386.70
cuda-base 37802.63 37914.54 731.44
nvcr-base 38351.47 38327.34 417.68
ubuntu-base 38432.59 38481.38 353.91
python-base 38478.95 38510.93 323.73

Table 1: Energy consumption statistics for different base variants
obtained by running the ML workload, sorted by median.

The energy consumption statistics from Table 1 show that,
while the central tendencies of the variants are somewhat
similar, there is noticeable variation in the cuda-base im-
age, which does suggest the presence of outliers in its energy
consumption data. To further understand if the differences
among the energy consumptions are significant, we perform
the Shapiro-Wilk normality test shown in Table 2. Based on
this, we notice that cuda-base and pytorch-base did not fol-
low a normal distribution, as indicated by their p-values (i.e.,
below 0.05), whereas python-base, nvcr-base, and ubuntu-
base exhibited normality.

To assess the significant differences in energy consumption
among the variants and also to answer RQ1: “How do differ-
ent Docker images affect the energy consumption of inference
ML workloads?”, Dunn’s post-hoc test with Bonferroni cor-
rection was applied with results present in Table 4. The re-
sults indicate that there are significant differences in energy

https://github.com/anaterna/sustainablesoftware/tree/main/project2
https://github.com/anaterna/sustainablesoftware/tree/main/project2
https://docs.python.org/3/library/subprocess.html


Figure 3: Energy consumption during the workload. Figure 4: Execution time during the workload.

Variant p-value Normality
cuda-base 0.0 ✗
nvcr-base 0.98815 ✓
python-base 0.14876 ✓
pytorch-base 0.04535 ✗
ubuntu-base 0.38089 ✓

Table 2: Shapiro-Wilk normality test results. A ✓ indicates normal
distribution, while a ✗ indicates non-normal data.

consumption between several of the base variants. Specif-
ically, cuda-base and pytorch-base show lower energy con-
sumption compared to ubuntu-base and python-base. The
Dunn’s test, which was applied due to the non-normality of
some of the data (as determined by the Shapiro-Wilk normal-
ity test), is suitable for comparing multiple groups when the
assumption of normality is not met. The differences observed
in the energy consumption across these base images may be
attributed to the underlying configurations and optimizations
in each image. For instance, cuda-base and pytorch-base
likely have optimizations that lead to lower energy usage,
especially for machine learning workloads, whereas ubuntu-
base and python-base might not have the same level of such
optimizations, leading to higher energy consumption. These
variations highlight the importance of choosing the right base
image depending on the specific workload and resource effi-
ciency requirements.

Variant Median Mean σ

cuda-base 800.92 809.79 35.27
pytorch-base 805.06 807.24 20.24
nvcr-base 840.27 848.78 24.77
python-base 840.07 844.48 24.69
ubuntu-base 850.05 846.00 25.87

Table 3: Execution time statistics for different base variants, ordered
by median.

Table 4: Dunn’s Test Results (Bonferroni-corrected p-values)

nvcr python pytorch ubuntu

cuda 0.0011 0.0000 0.3343 0.0000
nvcr - 1.0000 0.0000 1.0000
python - - 0.0000 1.0000
pytorch - - - 0.0000

Table 5: Effect Size Analysis: Mean Difference and Cliff’s Delta

Variant 1 Variant 2 Mean Difference ∆

cuda-base python-base -596.39 -0.86
cuda-base pytorch-base 481.98 0.60
cuda-base nvcr-base -412.80 -0.69
cuda-base ubuntu-base -566.84 -0.84
python-base pytorch-base 1078.37 0.97
python-base nvcr-base 183.59 0.25
python-base ubuntu-base 29.55 0.08
pytorch-base nvcr-base -894.78 -0.87
pytorch-base ubuntu-base -1048.82 -0.94
nvcr-base ubuntu-base -154.04 -0.22

To further understand the differences between images, we
look at the mean difference and Cliff’s delta (∆), which offers
deeper insights between various base image pairs. Notably,
large negative and positive values of Cliff’s delta suggest sub-
stantial differences between some image pairs. For example,
the comparison between cuda-base and python-base shows
a large negative mean difference of -596.39 J, accompanied
by a significant negative value of (i.e., ∆ = −0.86), indicat-
ing a considerable reduction in energy consumption in cuda-
base. Similarly, the cuda-base and ubuntu-base comparison
also demonstrates a significant effect size (i.e., ∆ = −0.84),
further emphasizing the potential energy efficiency of cuda-
base. Conversely, python-base and pytorch-base exhibit a
large positive mean difference (i.e., 1078.37 J) and an even
higher positive delta (i.e., ∆ = 0.97), highlighting a no-



table increase in energy consumption with python-base com-
pared to pytorch-base. The magnitude of differences between
pytorch-base and ubuntu-base (i.e., ∆ = −0.94) further sup-
ports the assumption that pytorch-base tends to consume less
energy, which might imply that it adopts better optimizations
for ML workloads, in our case, for the ResNet model. Smaller
values of Cliff’s delta, such as 0.08 between python-base and
ubuntu-base, indicate relatively minor differences in energy
consumption, suggesting these two base images exhibit sim-
ilar resource usage. In general, the analysis highlights sub-
stantial differences in energy efficiency between the various
base images, with cuda-base and pytorch-base showing to be
more energy-efficient choices for ResNet workloads.

For the baseline, we conducted the experiment using all
five Docker images in an idle state. As shown in Figure 5,
there is no significant difference in energy consumption vari-
ation among the images. While cuda-base and python-base
exhibit slight decreases in energy consumption, these changes
are marginal. Similarly, Figure 6 reveals that there is no no-
ticeable difference in the time taken to run the idle stage. This
suggests that, although the Docker images have similar start-
up times, any noticeable differences in performance or energy
consumption are likely to emerge during the execution of the
workload. We also hypothesize that different workloads may
introduce further variations in the results. Therefore, for fu-
ture work, a more in-depth analysis of the performance and
energy consumption across various workloads is needed.

5 Discussion

In this section, we focus on explaining the results and answer
RQ2: “What are the configurations in Docker images that af-
fect energy consumption the most?”. The results of the exper-
iment show an indication that the Docker image configuration
can have a significant impact on the energy consumption on
the Machine Learning workload described in Section 3, even
when the runtime libraries installed on them are apparently
identical. Testing has shown that, in general, more tightly
integrated containers exhibit lower energy consumption than
those on which manual installations were performed. How-
ever, not all optimized containers performed as expected. In
this section, we discuss the possible reasons and implications
of these results.

Environment Variables

Environment variables are one of the less obvious differ-
ences between images that can affect performance. Taking
a closer look, our version of PyTorch CUDA sets the PY-
TORCH CUDA ALLOC CONF environment variable to ex-
pandable segments:True. This is a memory management set-
ting that tells PyTorch to use larger memory segments that can
grow as needed, as opposed to allocating and freeing smaller
memory segments [13]. The use of larger segments means
less frequent memory operations, hence lower energy con-
sumption.

Pip and Conda
PyTorch CUDA uses Conda9 to manage dependencies, which
is a system package manager. The other images use Pip 10,
which can only install Python libraries.

Conda solves the full dependency tree and install all the
needed libraries in the CUDA toolkit, installing precompiled
binaries for the target platform. Pip also only bundles CUDA
runtime 11, which is more simplified than the full driver and
might result in a loss of performance. Combined with a possi-
ble mismatch in the native libraries that would make PyTorch
may fall back to CPU or other kernels.

Dynamic Linking Overhead
There are two ways to link libraries to source code. On one
hand, there is static linking, which is most often performed
immediately after compilation and results in a self-contained
executable. On the other hand, dynamic linking is performed
during run time and uses shared libraries available on the sys-
tem [14]. Dynamically linked programs usually use so-called
trampolines to resolve the memory addresses of library func-
tions at runtime and this can result in a higher instruction
count and more branching operations [15].

It is possible that the optimized images will have statically-
linked binaries compiled by the maintainers, while images
with manual installations use less integrated dynamic linking.

Balancing Image Size
Table 6 shows a summary comparison of pytorch-base with
all of the other images in terms of consumption and image
size. We can see that nvcr-base is disproportionately larger
than the other images, probably due to its large-scale enter-
prise applicability. Although image size does not directly
affect consumption during inference, it affects consumption
during download and increases size requirements. When
scaled to a large number of servers, this can increase costs
and even offset the potential reduction in inference energy
consumption.

In the context of this study, one potential explanation for
the relatively small difference in energy consumption of the
enterprise container is that it has been designed for workloads
that far exceed the scope of the one we have tested. However,
the result shows that images should be chosen with workload
scale in mind.

Image Consumption Diff(%) Size Diff (%)
cuda-base 454.88 (1.22%) 3.29 (34.2%)
nvcr-base 1003.72 (2.69%) 31.24 (324.74%)
python-base 1084.84 (2.9%) -0.51 (-5.3%)
ubuntu-base 1131.2 (3.03%) 0.33 (3.43%)

Table 6: Relative with pytorch-base, in terms of median energy con-
sumption (J) and image size (GB)

9https://anaconda.org/anaconda/conda
10https://pypi.org/project/pip/
11https://docs.nvidia.com/cuda/cuda-runtime-api/driver-vs-

runtime-api.html



Figure 5: Baseline: Energy consumption during in idle state. Figure 6: Baseline: Execution time in idle state.

5.1 Threats to validity
When conducting an experiment, potential risks that could
affect the validity of the results have to be assessed. Three
limitations could have been considered during the study. To
some extent the time taken for running the experiments could
prevent from revealing more significant differences between
the set ups of the images. While an experiment takes around
14 minutes, a short amount of time, performing it 30 times
increases the overall time and forces us to limit the run time
of it. Secondly, the startup costs of a Docker container were
taken into consideration when measuring the consumption,
leading to a potential disruption of the results. However, in
a real-world scenario, the workloads would be long running,
and therefore, the startup costs become insignificant. The ex-
periments were run on a single machine with the hardware
stated in Section 3.1. Nonetheless, this set up is not represen-
tative of every machine. The limited size of RAM (i.e. system
memory) and VRAM (i.e. video RAM) can lead to the usage
of swap memory (i.e. when primary memory is insufficient,
data overflows from one type of memory to another), thus in-
creasing the energy consumption. Moreover, our experiments
use a consumer-grade GPU that lacks the tensor cores of the
current generation. This means that the energy consumption
reported is not representative of the current generation hard-
ware. Furthermore, the NVIDIA PyTorch NGC base image is
optimized for enterprise-grade hardware like DGX systems,
which means that our hardware did not leverage them.

5.2 Future work
The results obtained in this study indicate that container de-
sign choices have energy consumption implications. There
are multiple research directions for further exploration of this
problem, and we propose some in this subsection.

To help generalize the findings, the workloads can be run
across a wider spectrum of hardware (e.g., different GPU gen-
erations). This can determine if the consumption difference
is a trend on all hardware setups or is only limited to specific
components. Building on the same idea, other frameworks
(e.g., TensorFlow, JAX) should be explored as well to see if
the same trends can be applied to them.

In the area of container improvement, the effect of individ-
ual Dockerfile layers can be isolated and tested to see their
effect on performance and energy. A very interesting idea
to explore after determining the effects of individual layers
would be to extend tools like dive12, that now focus on opti-
mizing container size, to also support automatic image audit-
ing for energy efficiency. This could help make energy issues
visible and enable developer action.

6 Conclusions
To conclude, this study measured the energy consumption of
five different Docker images during the inference phase of a
Machine Learning workload. The results indicate that image
configuration can have a significant impact on energy con-
sumption: ready-made, integrated images exhibit, in general,
lower consumption patterns than manual installations. How-
ever, they also show that more integration is not always better,
and the base image for deployment should be chosen with the
scale of the workload in mind.

Further research can be conducted to generalize the finding
and explore the impact of Docker layers on energy consump-
tion and create tools to help developers understand these ef-
fects and help them optimize the energy consumption of their
containers.

References
[1] Emma Strubell, Ananya Ganesh, and Andrew McCal-

lum. Energy and policy considerations for deep learning
in nlp, 2019.

[2] Roberto Verdecchia, June Sallou, and Luı́s Cruz. A sys-
tematic review of green ai, 2023.

[3] Radosvet Desislavov, Fernando Martı́nez-Plumed, and
José Hernández-Orallo. Trends in ai inference energy
consumption: Beyond the performance-vs-parameter
laws of deep learning. Sustainable Computing: Infor-
matics and Systems, 38:100857, April 2023.

12https://github.com/wagoodman/dive



[4] Sailesh Oduri. Revolutionizing machine learning model
serving with containerization. JOURNAL OF AD-
VANCED RESEARCH ENGINEERING AND TECH-
NOLOGY (JARET), 3(1):67–75, 2024.

[5] Eddie Antonio Santos, Carson McLean, Christopher
Solinas, and Abram Hindle. How does docker affect
energy consumption? evaluating workloads in and out
of docker containers, 2017.

[6] Mehul Warade, Kevin Lee, Chathurika Ranaweera, and
Jean-Guy Schneider. Monitoring the energy consump-
tion of docker containers. In 2023 IEEE 47th An-
nual Computers, Software, and Applications Confer-
ence (COMPSAC), pages 1703–1710, 2023.

[7] Enrique Barba Roque, Luis Cruz, and Thomas Durieux.
Unveiling the energy vampires: A methodology for de-
bugging software energy consumption, 2024.

[8] Bailey Tjiong. The impact of base image selection on
the energy efficiency of containerized applications in
docker, 2023.

[9] Negar Alizadeh and Fernando Castor. Green ai: a pre-
liminary empirical study on energy consumption in dl
models across different runtime infrastructures. In Pro-
ceedings of the IEEE/ACM 3rd International Confer-
ence on AI Engineering - Software Engineering for AI,
CAIN 2024, page 134–139. ACM, April 2024.

[10] Soyeon Park and Hyokyung Bahn. Performance anal-
ysis of container effect in deep learning workloads and
implications. Applied Sciences, 13(21), 2023.

[11] Raluca Maria Hampau, Maurits Kaptein, Robin van
Emden, Thomas Rost, and Ivano Malavolta. An em-
pirical study on the performance and energy consump-
tion of ai containerization strategies for computer-vision
tasks on the edge. In Proceedings of the 26th Inter-
national Conference on Evaluation and Assessment in
Software Engineering, EASE ’22, page 50–59, New
York, NY, USA, 2022. Association for Computing Ma-
chinery.

[12] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition,
2015.

[13] Cuda semantics: Optimizing memory usage wth py-
torch cuda alloc conf. ”Accessed 29-03-2025”.

[14] Michael Franz. Dynamic linking of software compo-
nents. Computer, 30(3):74–81, March 1997.

[15] Varun Agrawal, Abhiroop Dabral, Tapti Palit, Yong-
ming Shen, and Michael Ferdman. Architec-
tural support for dynamic linking. SIGPLAN Not.,
50(4):691–702, March 2015.


	Introduction
	Background & Related Work
	Methodology
	Harware Setup

	Results
	Discussion
	Environment Variables
	Pip and Conda
	Dynamic Linking Overhead
	Balancing Image Size

	Threats to validity
	Future work

	Conclusions

