
CS4575: Sustainable SE - Project
Energy Profiling of Static Analysis Tools
Andrea Onofrei

TU Delft

Delft, Netherlands

aonofrei@tudelft.nl

Ayush Kuruvilla

TU Delft

Delft, Netherlands

akuruvilla@tudelft.nl

Sahar Marossi

TU Delft

Delft, Netherlands

smarossi@tudelft.nl

Yulin Chen

TU Delft

Delft, Netherlands

yulinchen@tudelft.nl

Abstract
With increasing interest in software security, more automated tools

for vulnerability detection and enforcing secure coding standards,

also known as static analysis tools, are being utilized. On the other

hand, with sustainability becoming a critical non-functional re-

quirement, effectiveness is no longer the only parameter that needs

to be considered. This research paper aims to provide developers

with a tool that enables them to make informed decisions regarding

energy consumption by analyzing how different configurations and

rule sets of static analysis tools affect energy expenditure during

development. It outlines a published pypi framework that captures

and compares the energy usage of static analysis tools used in secu-

rity audit definitions, namely Bandit and Semgrep. The framework

was used on three Python repositories (Deepseek v3, requests, and

vLLM), using a minimal and maximum rule set for each respective

tool to investigate energy consumption patterns. Findings show

that Bandit consistently consumed the least CPU energy due to its

fast, lightweight design, while Semgrep scaled more efficiently on

larger projects due to parallel multi-threading. Increasing rule set

complexity led to higher energy usage and runtime for both Bandit

and Semgrep, which scaled with project size.

CCS Concepts
• Static analysis tools→ Sustainable SE.

Keywords
Energy Profiling, Static analysis tools

ACM Reference Format:
Andrea Onofrei, Ayush Kuruvilla, Sahar Marossi, and Yulin Chen. 2025.

CS4575: Sustainable SE - Project Energy Profiling of Static Analysis Tools .

In CS4575-Q3-25: Sustainable SE, TU Delft. 13 pages.

1 Introduction
Software Engineering (SE) is a constantly developing field, and

software applications are becoming increasingly complex by the

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

CS4575-Q3-25, TU Delft
© 2025 Copyright held by the owner/author(s).

day [11]. Academic studies show that there is a direct correlation

between software complexity and security vulnerabilities [1]. This

introduces additional demands within all phases of the software

development life cycle (SDLC), especially in the context of software

security practices.

Security concerns are considered to be an integral part of the SDLC

[15]. The consequences of inadequate security within a software

system could potentially be detrimental, especially due to the in-

creasing reliance on software systems in various sensitive domains

(such as banking, medicine, etc.) [13]. Hassan et al. (2024) empha-

sizes that security must be prioritized and practiced in every SDLC

phase to mitigate security threats, and consequently, the negative

effects that arise from insecure software systems [8].

A highly important software security practice is code reviewing for

security [12]. This can be achieved through static-analysis tools,
which are tools that allow for the identification of many common

coding problems through automated means before a program is

released [3]. This includes examining code for bugs, vulnerabilities,

and other quality issues without executing the source code. Tools

such as Bandit and Semgrep are commonly used within the security

domain to detect insecure coding patterns to ensure better coding

practices at scale.

While static analysis tools help improve code quality, and in turn,

security, they also have the potential to consume computing re-

sources. With the increasing need for secure code due to ubiquitous

software systems, static analysis is more frequently integrated into

CI/CD pipelines, often without consideration for its environmental

cost. This could lead to significant and unnecessary energy usage,

especially in larger code bases. While automated quality assurance

processes are crucial for software reliability, their electricity con-

sumption raises environmental concerns [16].

Sustainable software engineering (SSE) is an important goal to

follow, to develop software systems that minimize environmental

impact via energy optimization. As security-related static analysis

tools become increasingly important, so does the need to assess

their sustainability. This project aims to bridge that gap by profiling

energy consumption across different tools and configurations, in-

vestigating the potential trade-off between differing configurations



CS4575-Q3-25, 2025, TU Delft Group 10

across different Open-source software (OSS) projects, and enabling

developers to optimize their tool usage both from a security and

sustainability standpoint.

This report has the objective to investigate energy consumption

patterns in security-focused static analysis tools. To achieve this

objective the following research questions were devised:

• RQ1: How do rule set complexity and configuration choices

affect the energy efficiency of static analysis tools in different

codebase contexts?

• RQ2: Can energy usage data be effectively used to guide con-
figuration selection for secure static analysis tools without

compromising detection accuracy?

To address these research objectives, we propose an energy profiling

framework to:

• Measure energy usage during static analysis tool runs.

• Compare different rule sets and configurations within and

across tools.

• Generate actionable reports to help developers reduce energy

consumption.

2 Background and Related Work
Although efforts to quantify and mitigate energy dissipation attrib-

uted to software date back over a decade, the initial efforts were

primarily directed towards the runtime efficiency of software sys-

tems and not much development tooling. One original approach

was Hindle’s Green Mining (2015) [9] which attempted to relate

software revisions to power measurements with the hope of dis-

covering how code modifications impact energy utilization. Such

efforts set the stage to begin considering energy as a quantitative

variable in software engineering research.

Later, there was energy-conscious software development that came

into existence. Pang et al.’s work (2016) [14] reported on a sur-

vey given to programmers and noted an overall ignorance of the

issues surrounding software energy dissipation and stressed the

importance of education and tools in this domain. In response to

this gap in awareness, researchers like Chowdhury et al. (2019)

developed techniques to give developers feedback on energy usage.

Chowdhury’s GreenScaler project [4], for instance, trained models

to estimate the energy consumption of code by using automatically

generated tests. The underlying idea is that if developers are in-

formed about which tests or code paths are energy-hungry, they

can make more sustainable design choices.

Another venture of green software research has been to create tools

and methodologies for energy profiling. For example, Di Nucci et

al. (2017) introduced PETrA [6], a software-based tool to estimate

the energy profile of Android applications. Although PETrA targets

mobile apps, its existence reflects a growing toolkit for software

energy analysis in general.

Recently, attention has turned toward the energy overhead of devel-

opment infrastructure and processes. As described by Verdecchia

et al. (2021) [7], automation of tools and developer workflows are

part of the equation for greener IT. Zaidman (2024) [16] reported

that the automated building and testing of software projects con-

sume a significant portion of the projects’ energy. In his case study,

he found that the figures were remarkably different between the

projects. Some of them, made only a couple of watt-hours during a

build, whereas, others consumed energy over tens of kWh. Cruz and

Abreu (2020) [5] also discovered that some mobile testing automa-

tion frameworks are more energy efficient than others, disproving

the common assumption. Collectively, these works suggest that not

all tools or practices are equal with respect to energy usage: the

selection of frameworks, frequency of tests, and infrastructure used

all affect electricity consumption to some extent.

Although green software engineering literature has initiated the in-

vestigation of other tools such as testing, build processes, and even

runtime diagnostics, there is still a lack of coverage on the topic of

security-focused static analysis tools. Most existing research either

treats static analysis generically as part of overall CI energy costs

or focuses on how static analysis can help reduce software energy

use – not on the energy cost of running the analyzers themselves.

For example, Zaidman’s study mentions static analysis as one of

several automated quality practices but concentrates on testing and

integration. Likewise, studies such as Hindle’s Green Mining or

Cruz and Abreu’s work on test frameworks did not examine static

code scanners.

One recent study by Brosch [10] considered the influence of static

code analysis (Pylint) on a game system algorithm’s energy con-

sumption, finding that certain static checks (e.g., for inefficient

code) could lead to more energy-efficient codebases – but this was

more type checking as compared to security static analysis testing.

To summarize, tools such as Bandit and Semgrep have not had

their energy profiles estimated to date. It is likely that regularly ex-

ecuted security-focused static analyses (which are sometimes done

for every build or pull request) accumulate over time and can draw

power, especially if they are done on bigger codebases. This gap

is filled by our work which provides the energy profile of Bandit

and Semgrep. We focus on understanding how such security tools

impact the environment and whether their design is sufficiently

optimized for “green IT” by measuring energy consumption and

duration of execution in real-life settings.

In this paper, we add to the emerging literature that sits at the

boundary of software energy analysis and DevSecOps. This study

illustrates the future of sustainable software engineering, in which

decisions made, such as the selection of security scanning tools, con-

sider effectiveness alongside sustainability. Gaining insights into

the cost of energy for automated security checks will ultimately

enable practitioners to mitigate the impacts of code security on

environmentally friendly software development practices, thereby

simultaneously improving quality and sustainability.

3 Methodology
3.1 Objective of the Study
In this research paper, we study the energy efficiency of static appli-

cation security testing (SAST) tools with Python based codebases.



CS4575: Sustainable SE - Project
Energy Profiling of Static Analysis Tools CS4575-Q3-25, 2025, TU Delft

We investigate the functionalities and security aspects of two popu-

lar SAST tools, Bandit and Semgrep, under varying configurations.
We also quantify the energy consumed by each scan using a Python

tool developed by us, called sast-energy-monitor1, which incor-

porates energibridge for detailed energy consumption measure-

ment.

3.2 Selection of Open Source Projects
To evaluate the energy consumption of static analysis tools in real-

world scenarios, we selected a set of open-source Python projects.

These projects vary in size, complexity, and popularity to ensure

generalizable results.

Project Repository 1: Deepseek-v32

• Language: Python
• Lines of Python Code: 1,202
• Purpose: Lightweight AI tools and utilities.

• Popularity: Moderate (growing adoption in ML communi-

ties)

Rationale for Selection:

• Compact codebase suitable for low-overhead static analysis.

• Includes AI-specific logic and processing utilities.

• Serves as a baseline for energy usage in smaller repositories.

Project Repository 2: Requests3

• Language: Python
• Lines of Python Code: 9,164
• Purpose: A simple, yet elegant HTTP library for Python

• Popularity:High (well-maintained, widely used in the Python

ecosystem)

Rationale for Selection:

• Popular and mature Python library used in thousands of

projects.

• Contains both application logic and input/output handling,

offering a rich target for static security analysis.

• Its high usage in production environments makes it a practi-

cal candidate for sustainability evaluation.

Project Repository 3: vLLM4

• Language: Python
• Lines of Python Code: 286,537
• Purpose: High-throughput and memory-efficient LLM serv-

ing engine

• Popularity: High (widely adopted in large-scale LLM serv-

ing applications)

Rationale for Selection:

• Large codebase introduces challenges for static analysis

tools.

• Includes multithreading, CUDA integration, and complex

logic layers.

• Ideal for stress-testing the tools’ scalability and energy pro-

files.

1
https://pypi.org/project/sast-energy-monitor/

2
https://github.com/deepseek-ai/DeepSeek-V3

3
https://github.com/psf/requests

4
https://github.com/vllm-project/vllm

Security Static Analysis Tools
Bandit5 is a static analysis tool specialized in Python and scans

source files by traversing their AST to discover known security vul-

nerabilities. In the case of security issues, a specific rule containing

a code such as B101 (which corresponds to misuse of assert) is
predefined. Semgrep6, on the other hand, is a powerful structural

pattern matcher that combines knowledge of programming lan-

guages and scans the source code to extract structural code patterns.

Its rule definitions permit generic context and context-sensitive

checks thus providing a powerful customizable vulnerability scan-

ner.

For a comprehensive evaluation, we employed both tools in two con-

figurations, termed loose and strict. They both represent different

degrees of security checks realized through custom configuration

files.

Configuration Strategy
The energy monitoring tool, sast-energy-monitor, allows for ei-
ther a ’strict’ or ’loose’ configuration level

7
and calls the appropriate

scanner. For Bandit, the loose mode refers to a subset configuration

(.bandit-basic) which only performs two simple checks: scanning

for assert statements (B101) and dynamic exec usage (B102). This

is a lightweight scan that is useful for rapid iteration.

Bandit strictmode uses the full .bandit configuration file which
contains more than 60 rules.

8
These rules include scanning for as-

sert statements and dangerous imports such as pickle and subprocess,
weak cryptographic methods likeMD5with low-entropy keys, hard-

coded secrets, XML parser bombs, insecure network connections,

and others. This configuration follows industry standards by in-

corporating many CWE and OWASP rules that enable to perform

production-level scans.

With Semgrep, the loose configuration has a simplistic YAML rule

set targeting hardcoded JWT secret tokens, which in Python ap-

plications, represent a common but sensitive vulnerability. The

strict mode uses the complete Semgrep Registry ruleset under the

p/bandit9 policy with 90 rules.

Energy Monitoring Tool
To allow for reusability of our code, we created the Python pack-

age sast-energy-monitor, which encapsulates the invocation

of Bandit or Semgrep scans, with varying configurations using

energibridge10 in one package. Energibridge in turn was built

by leveraging low-level tools such as Intel RAPL to access energy

usage metrics at runtime.

By automating both the scanning and measurement processes, this

methodology ensures consistency across experiments and allows

5
https://pypi.org/project/bandit/

6
http://pypi.org/project/semgrep/

7
https://github.com/Ayushkuruvilla/Energy_consumption/tree/main/test_configs

8
https://bandit.readthedocs.io/en/latest/plugins/index.html#complete-test-plugin-

listing

9
https://semgrep.dev/p/bandit

10
https://github.com/tdurieux/energibridge

https://pypi.org/project/sast-energy-monitor/
https://github.com/deepseek-ai/DeepSeek-V3
https://github.com/psf/requests
https://github.com/vllm-project/vllm
https://github.com/Ayushkuruvilla/Energy_consumption/blob/main/test_configs/.bandit_basic
https://github.com/Ayushkuruvilla/Energy_consumption/blob/main/test_configs/.bandit
https://pypi.org/project/bandit/
http://pypi.org/project/semgrep/
https://github.com/Ayushkuruvilla/Energy_consumption/tree/main/test_configs
https://bandit.readthedocs.io/en/latest/plugins/index.html#complete-test-plugin-listing
https://bandit.readthedocs.io/en/latest/plugins/index.html#complete-test-plugin-listing
https://semgrep.dev/p/bandit
https://github.com/tdurieux/energibridge


CS4575-Q3-25, 2025, TU Delft Group 10

for comparative evaluation of different scanners and configurations

in terms of their energy footprint and vulnerability detection depth.

3.3 Experiment Setup
To ensure reliable and reproducible measurements of both energy

consumption and security findings, each experiment followed a con-

trolled execution run. At the start of each run, a Fibonacci warmup

function was executed for one minute. This step served to stabilize

CPU performance and avoid energy spikes that might occur at the

onset of computation, ensuring the baseline energy draw remained

consistent across all iterations.

Each test condition defined by a specific combination of the static

analysis tool and its corresponding rule set, was executed thirty

times. The order of these conditions was randomized before each

round of testing to mitigate systematic bias from thermal or power-

related fluctuations. The library automates the execution of every

scan through subprocess calls while working together with En-

ergibridge to measure and register the total energy spent during

the scan time. The results from each iteration was captured in CSV

files for post analysis of tool results and energy measurements.

To avoid drift, a twenty-second resting time was implemented be-

tween iterations. This break assisted in normalizing system usage to

minimize the chances of performance throttling and getting more

precise energy consumption measures.

All experiments were conducted in ‘zen mode’. This involved dis-

abling all non-essential background apps and services, removing

external hardware peripherals, and setting screen brightness to a

particular value. These steps helped ensure that every iteration cap-

tured the true nature of the scanning tools and the configurations

instead of being impacted by other external noise or factors.

4 Results and Analysis
Static Analysis Mechanics: Bandit and Semgrep
Both Bandit and Semgrep were configured to scan for a comparable

set of Python security vulnerabilities. Although the rule sets covered

equivalent issues, the way each tool handles rule execution differs

significantly and directly influences their energy behavior.

• Bandit: Bandit’s rules are implemented as Python code that

inspects the abstract syntax tree (AST) of each file. Each

rule is essentially a function that runs over relevant AST

nodes (for example, a rule might trigger when it sees an

eval() call or a hard-coded password in the code). Bandit

runs in a single thread and iterates through each file’s AST,

applying all relevant rules. More rules mean more checks

per file, increasing runtime roughly linearly. However, Ban-

dit’s checks are generally fairly simple (looking for specific

function names, constants, or patterns), which keeps each

check lightweight.

• Semgrep: Semgrep doesn’t have built-in rules in the same

way; it uses an external ruleset. In this experiment, Semgrep

was supplied with a ruleset equivalent to Bandit’s cover-

age (the Semgrep community provides rulesets like p/bandit

that cover the same issues as Bandit). Thus, Semgrep was

effectively looking for the same kinds of security patterns.

Under the hood, Semgrep compiles these rules (written in a

declarative pattern syntax) into its scanning engine. Many

Semgrep rules correspond one-to-one with Bandit checks,

though some may be implemented with multiple pattern

clauses or regexes to cover variations. Semgrep’s engine will

parse each source file and then apply all the pattern rules to

that file’s parse tree. It can do this efficiently in C/OCaml,

but it does incur some overhead to load and compile the

rules (especially since the ruleset was fairly large, 90 rules).

By default, Semgrep also utilizes multiple threads to process

files in parallel.

Complexity Impact: In this comparison, both tools were config-

ured with a comparable number of rules (covering similar checks),

so the rule count was kept roughly constant between them. But,

the nature of those rules can affect performance. Bandit’s Python-

based rules might short-circuit quickly if a pattern isn’t found (for

example, if a file has no import statements related to security, many

Bandit rules do nothing on that file). Semgrep’s pattern matching

might involve more work upfront (it may attempt matches even if

ultimately none are found, which is some overhead). In a few cases,

Semgrep’s rules could be more complex – for instance, a Bandit

rule that checks for the use of a weak hash function might simply

look for the string "md5" in the code, whereas a Semgrep rule might

be written to pattern-match function calls using hashlib.md5 or

openssl.md5 etc., covering more variants. This can make Semgrep’s

analysis a bit heavier, but also more comprehensive.

Project Codebase Characteristics and Complexity
• DeepSeek-V3: The codebase is small and self-contained,

with no heavy concurrency or large data processing. This low

complexitymeant static analysis had a light workload. Bandit

and Semgrep only needed to parse and check a handful of

files, so the runtime was very short. In such a scenario, the

fixed overhead of the tool dominates—i.e., the time/energy

the tool spends initializing and loading rules can outweigh

the actual scanning of code. This is why Semgrep, which

has a larger upfront cost, used more energy here, whereas

Bandit’s simpler run had an advantage.

• Requests: Requests has a well-structured codebase with

multiple modules (e.g., sessions, auth, adapters) but remains

relatively straightforward. It primarily uses synchronous

I/O and does not spawn threads internally. The moderate

size means a few dozen source files. Static analysis had to

process more code than DeepSeek-V3, but still at a manage-

able scale. Bandit’s sequential scan handled this efficiently,

and its overhead remained low. Semgrep had more work

to do than in DeepSeek, but still needed to expend effort

setting up its engine. The result was that Bandit maintained

a lower total CPU energy usage on Requests as well. The

project’s architecture (being a typical Python library) did

not present special challenges to either tool—the main factor

was just code volume, where 9k LOC is still small enough

that Bandit’s lack of parallelism wasn’t a problem.



CS4575: Sustainable SE - Project
Energy Profiling of Static Analysis Tools CS4575-Q3-25, 2025, TU Delft

• vLLM: This project is vastly more complex. It includes ad-

vanced features like request batching, asynchronous sched-

uling, and integration with GPU acceleration (optimized

CUDA kernels are part of its design). The codebase spans

hundreds of Python files and incorporates multithreading

or asynchronous code to manage inference tasks. This sheer

size and complexity posed a stress test for the static analysis

tools. Scanning vLLM means parsing a huge number of files

and checking many possible code patterns. Bandit, being

single-threaded, had to process files one by one for the en-

tire 286k LOC, which took a long time. Semgrep, on the other

hand, could distribute the workload across CPU cores. The

concurrency and architectural complexity of vLLM (while

relevant at runtime) mostly affects the static analyzers by

way of code quantity and possibly some complicated syntax.

For instance, vLLM uses dynamic constructs or long chains

of calls that each tool’s rules need to examine. This increases

the workload linearly with LOC (each additional function

or class is another thing to check for vulnerabilities). The

end result was that vLLM demanded far more processing,

and here the ability to parallelize gave Semgrep a big edge

in performance and energy. Bandit’s pure Python implemen-

tation may also struggle with memory usage on such a large

project (large ASTs, many objects), potentially causing slow-

downs (e.g., garbage collection pauses) that add to its energy

consumption.

Influence on energy use: In summary, small, simple projects (like

DeepSeek-V3) don’t fully utilize modern CPUs—the static analysis

finishes so quickly that a tool withmore overhead (Semgrep) doesn’t

get to amortize that cost, resulting in proportionally higher energy

per LOC. Large, complex projects (like vLLM) keep the analyzer

busy for much longer and can take advantage of optimizations

like parallel threads. Thus, project size is a major factor: Bandit

excels on smaller codebases where its lightweight, single-process

approach means lower overhead, whereas on large codebases the

lack of parallelism becomes a disadvantage. Meanwhile, Semgrep’s

design incurs a startup cost that is paid off when there’s a lot of

code to scan; its architecture works well in large, complex projects

by leveraging concurrency and efficient parsing to handle scale.

Figure 1: Energy difference between repositories

Figure 2: Time difference between repositories

Figure 3: Power difference between repositories

Tool Configuration: Ruleset Size and Complexity
• Bandit – Minimal vs Full Configuration:
Across all three projects (DeepSeek-V3, requests, and vllm),

moving from Bandit’s minimal (loose) configuration to the

full (strict) ruleset (73 rules) consistently led to higher energy

consumption and longer runtimes, with the impact increas-

ing alongside project size. In the requests project, runtime

rose by 33.8% and energy by 32.4%. In the larger vllm project,

the increase was even more substantial—65% more energy

and 64.7% longer execution time. On the small DeepSeek-V3

project, however, runtime remained unchanged (approxi-

mately 0.60s), and the only statistically significant change

was a modest 3.4% increase in energy. These results, sup-

ported by a statistical significant p-value (see Table 1), sug-

gest that Bandit’s AST traversal is highly efficient on small

projects, but becomes more resource-intensive as rule and

code complexity grow.

• Semgrep – Minimal vs Full Configuration:
Semgrep exhibited consistent and statistically significant in-

creases in execution time and energy usage across all projects



CS4575-Q3-25, 2025, TU Delft Group 10

when switching from a minimal configuration to a full rule-

set (90 rules from the p/bandit registry). Time increased by

59–65% and energy usage by 29–47%, with all results show-

ing strong statistical significance (see Table 1). Interestingly,

CPU power draw decreased slightly (by 8–10%), suggest-

ing that although more work was performed overall, the

load was spread more evenly—likely due to Semgrep’s rule-

matching engine incurring more I/O and pattern compilation

overhead rather than raw CPU-intensive computation.

CPU Power, Energy, Time, and Variability
Using EnergiBridge measurements, we compared CPU energy us-

age, power, and execution time for Bandit and Semgrep across

three Python projects. Each tool was executed 30 times to assess

consistency. The detailed results of these scans and their specific

configurations can be seen in Appendix A.

• DeepSeek-V3: As we can see in Figure 3, Bandit used 47W

on average and finished in 1s. Semgrep drew similar power

( 45W) but took 4s to complete. This longer runtime led

Semgrep to consume significantly more energy. Despite near-

identical power profiles, Bandit’s quick execution ensured

lower energy use.

• Requests: Bandit completed scans in under a second, draw-

ing an average of 65–70W, while Semgrep, as we can see in

Figure 2, took 4–5 seconds at 43W. Despite lower power, Sem-

grep consumed 3–4× more total CPU energy due to longer

runtime.

• vLLM : Bandit consumed more energy and took longer than

Semgrep. Here, Semgrep’s multithreaded execution paid off,

completing faster ( 13s vs. 15s) and using less energy ( 600J

vs. 750J). Power draw was nearly the same ( 49–50W), but

the shorter runtime made Semgrep more efficient on this

large project.

Configuration Energy t-test p-value Power t-test p-value
Deepseek Bandit 1.24 × 10

−5
1.28 × 10

−5

Requests Bandit 8.15 × 10
−30

4.30 × 10
−2

VLLM Bandit 6.30 × 10
−26

8.12 × 10
−1

Deepseek Semgrep 2.83 × 10
−26

5.19 × 10
−30

Requests Semgrep 1.60 × 10
−38

2.09 × 10
−14

VLLM Semgrep 9.64 × 10
−23

2.87 × 10
−15

Table 1: t-test p-values for energy and power comparisons
across configurations

Key Insights and Energy Implications
In conclusion, the results reveal important insights into the energy

efficiency and performance of Bandit and Semgrep, depending on

the size and complexity of the codebase. Bandit is more efficient for

small and medium projects due to its fast, low-overhead execution.

Its simplicity allows it to minimize energy consumption, making

it an ideal choice for smaller repositories, such as requests and

DeepSeek-V3.

On the other hand, Semgrep introduced overhead on small code-

bases but demonstrated a more scalable and efficient performance

on large projects, such as vllm, thanks to its parallel processing

capabilities. Although Semgrep consumed more energy for smaller

projects, its ability to scale effectively with the size and complexity

of larger codebases meant that it could potentially offset the higher

initial energy consumption by completing scans faster.

Execution time was the primary driver of energy consumption

across both tools, with Semgrep’s longer execution times on small

codebases leading to higher energy consumption, while its paral-

lelism on larger projects allowed for faster execution despite the

higher energy cost.

Rule configuration impacted both tools: more rules lead to higher

energy and runtime, especially on large codebases. Bandit’s perfor-

mance degraded more with added rule complexity, while Semgrep

handled it better due to its efficient rule engine and load distribution.

Both tools showed low variability over 30 runs, confirming the

reliability of the measurements and ensuring that the results are

consistent and dependable across repeated tests. Therefore, Bandit

is the preferred choice for small and medium projects, where min-

imal overhead is crucial, while Semgrep is more suited for larger

projects, where its parallelism offers significant advantages in both

time and energy efficiency.

5 Limitations
There have been some limitations to the research. This includes the

following:

• Limited Toolset:Our analysis was restricted to two Python-
based SAST tools—Bandit and Semgrep. The inclusion of

additional tools, especially those targeting other languages

or domains (e.g., Java, C++, JavaScript), could broaden the

applicability of our framework.

• Python-OnlyCodebases:All evaluated projects were Python-
based. The energy profiles and tool behaviors may vary sig-

nificantly across programming languages due to differences

in parsing complexity, syntax richness, and rule availability.

• CI/CD Pipeline Integration Not Evaluated: Although
many teams use static analysis tools in automated pipelines,

this study focused on standalone tool runs. Evaluating en-

ergy usage in CI/CD environments could uncover additional

insights into realistic usage scenarios, including impact from

parallel builds and caching.

• Energy Measurement Limitations: While energy con-

sumptionwasmeasured during static analysis runs, the setup

does not fully account for external variables such as back-

ground system load or hardware variability.

6 Future Work
Future work includes addressing the above limitations and expand-

ing the framework to other programming languages and static

analysis tools. Exploring multi-language support would further

enhance the framework’s domain of analysis, alongside its applica-

bility to polygot codebases.



CS4575: Sustainable SE - Project
Energy Profiling of Static Analysis Tools CS4575-Q3-25, 2025, TU Delft

In addition, a study by Benett et al. (2024) reports that combin-

ing multiple SAST tools significantly improves vulnerability de-

tection rates compared to using individual tools [2]. Investigating

the energy consumption implications of multi-tool configurations

may lead to additional insights that reflect the real-world tradeoff

between security vulnerability detection rates and energy consump-

tion, alongside how to optimize energy expenditure through hybrid

rule sets.

Furthermore, future work could investigate energy consumption in

practical environments by incorporating CI/CD workflows. This

includes evaluating energy usage under common practices such as

parallel builds, cashing, incremental scans, and pipeline-triggered

executions.

7 Conclusion
This study proposes a reproducible model for analyzing the energy

consumption of static analysis tools, highlighting the aspect of sus-

tainability in programming as an important secondary attribute.

We demonstrate through the analysis of real-world Python projects

that energy consumption stems not only from the tool’s design but

also from its multi-threading architecture, rule set complexity, and

the type of codebase.

Given its straightforward serial design, Bandit was found to expend

the least total CPU energy on small, mid-sized, and even some large

projects. Its speed and low overhead makes it unrivaled among

tools intended for repeated scanning. Semgrep, though more effi-

cient per-seconds, suffers from greater overhead on small projects.

Nevertheless, it also has the potential to perform competitively, and

at times more efficiently on larger, intricate codebases due to its

scalable parallel architecture and rich rule set.

Selection of tools based on energy efficiency for specific descrip-

tive tasks should be calibrated to the size of the project and the

objectives of the analysis. In contrast to Bandit, Semgrep is advan-

tageous for high-level, deep-seated audits owing to its variety of

configurations but excels as long as the frequency of the scan is

lower and the scan is more detailed. This fosters the alignment of

security with sustainability and ultimately bolsters efforts toward

greener software engineering.

References
[1] Mamdouh Alenezi and Mohammad Zarour. 2020. On the relationship between

software complexity and security. (2020). https://arxiv.org/abs/2002.07135

arXiv: 2002.07135 [cs.SE].
[2] Gareth Bennett, Tracy Hall, Emily Winter, and Steve Counsell. 2024. Semgrep*:

improving the limited performance of static application security testing (sast)

tools. In Proceedings of the 28th International Conference on Evaluation and
Assessment in Software Engineering (EASE ’24). Association for Computing

Machinery, Salerno, Italy, 614–623. isbn: 9798400717017. doi:10.1145/3661167

.3661262.

[3] Brian Chess and Gary McGraw. 2004. Static analysis for security. IEEE security
& privacy, 2, 6, 76–79.

[4] Shaiful Chowdhury, Stephanie Borle, Stephen Romansky, and Abram Hin-

dle. 2019. Greenscaler: training software energy models with automatic test

generation. Empirical Software Engineering, 24, 1649–1692.
[5] Luis Cruz and Rui Abreu. 2019. On the energy footprint of mobile testing

frameworks. IEEE Transactions on Software Engineering, 47, 10, 2260–2271.
[6] Dario Di Nucci, Fabio Palomba, Antonio Prota, Annibale Panichella, Andy

Zaidman, andAndrea De Lucia. 2017. Petra: a software-based tool for estimating

the energy profile of android applications. In 2017 IEEE/ACM 39th International
Conference on Software Engineering Companion (ICSE-C). IEEE, 3–6.

[7] [n. d.] Energy-aware software testing. (). https://robertoverdecchia.github.io/p

apers/ICSE_2025.pdf#:~:text=stated%20that%20%E2%80%9Ctesting%20not%2

0only,In%20a%20more%20recent.

[8] Faris Mohamed Ahmed Hassan, Shampa Rani Das, and Manzoor Hussain. 2024.

Importance of secure software development for the software development at

different sdlc phases. Authorea Preprints.
[9] Abram Hindle. 2015. Green mining: a methodology of relating software change

and configuration to power consumption. Empirical Software Engineering, 20,
374–409.

[10] [n. d.] Influence of static code analysis on energy consumption of software. ().

https://dl.gi.de/server/api/core/bitstreams/0e14dab3-b66b-411e-ad66-05eefa

e6756d/content.

[11] Sara S Mahmoud and Imtiaz Ahmad. 2013. A green model for sustainable

software engineering. International Journal of Software Engineering and Its
Applications, 7, 4, 55–74.

[12] Gary McGraw. 2004. Software security. IEEE Security & Privacy, 2, 2, 80–83.
[13] Martin Otieno, David Odera, and Jairus Ekume Ounza. 2023. Theory and prac-

tice in secure software development lifecycle: a comprehensive survey. World
Journal of Advanced Research and Reviews, 18, 3, 053–078.

[14] Candy Pang, Abram Hindle, Bram Adams, and Ahmed E Hassan. 2015. What

do programmers know about software energy consumption? IEEE Software, 33,
3, 83–89.

[15] Frederick G Tompkins and Russell S Rice. 1986. Integrating security activities

into the software development life cycle and the software quality assurance

process. Computers & Security, 5, 3, 218–242.
[16] Andy Zaidman. 2024. An inconvenient truth in software engineering? the

environmental impact of testing open source java projects. In Proceedings of
the 5th ACM/IEEE International Conference on Automation of Software Test (AST
2024), 214–218.

https://arxiv.org/abs/2002.07135
https://arxiv.org/abs/2002.07135
https://doi.org/10.1145/3661167.3661262
https://doi.org/10.1145/3661167.3661262
https://robertoverdecchia.github.io/papers/ICSE_2025.pdf#:~:text=stated%20that%20%E2%80%9Ctesting%20not%20only,In%20a%20more%20recent
https://robertoverdecchia.github.io/papers/ICSE_2025.pdf#:~:text=stated%20that%20%E2%80%9Ctesting%20not%20only,In%20a%20more%20recent
https://robertoverdecchia.github.io/papers/ICSE_2025.pdf#:~:text=stated%20that%20%E2%80%9Ctesting%20not%20only,In%20a%20more%20recent
https://dl.gi.de/server/api/core/bitstreams/0e14dab3-b66b-411e-ad66-05eefae6756d/content
https://dl.gi.de/server/api/core/bitstreams/0e14dab3-b66b-411e-ad66-05eefae6756d/content


CS4575-Q3-25, 2025, TU Delft Group 10

A Appendix
A.1 Performance Plots by Security Tool and

Project

(a) Power (b) Execution Time

(c) Energy

Figure 4: Performance metrics for bandit_DeepSeek-V3.



CS4575: Sustainable SE - Project
Energy Profiling of Static Analysis Tools CS4575-Q3-25, 2025, TU Delft

(a) Power (b) Execution Time

(c) Energy

Figure 5: Performance metrics for bandit_requests.



CS4575-Q3-25, 2025, TU Delft Group 10

(a) Power (b) Execution Time

(c) Energy

Figure 6: Performance metrics for bandit_vllm.



CS4575: Sustainable SE - Project
Energy Profiling of Static Analysis Tools CS4575-Q3-25, 2025, TU Delft

(a) Power (b) Execution Time

(c) Energy

Figure 7: Performance metrics for semgrep_DeepSeek-V3.



CS4575-Q3-25, 2025, TU Delft Group 10

(a) Power (b) Execution Time

(c) Energy

Figure 8: Performance metrics for semgrep_requests.



CS4575: Sustainable SE - Project
Energy Profiling of Static Analysis Tools CS4575-Q3-25, 2025, TU Delft

(a) Power (b) Execution Time

(c) Energy

Figure 9: Performance metrics for semgrep_vllm.


	Abstract
	1 Introduction
	2 Background and Related Work
	3 Methodology
	3.1 Objective of the Study
	3.2 Selection of Open Source Projects
	3.3 Experiment Setup

	4 Results and Analysis
	5 Limitations
	6 Future Work
	7 Conclusion
	A Appendix
	A.1 Performance Plots by Security Tool and Project


