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Abstract

The increasing adoption of Large Language Models (LLMs) has raised concerns about their computational efficiency and
energy consumption. This study presents a comparative analysis of four popular LLM inference libraries—Ollama, MLC,
vLLM, and TensorRT—evaluating their energy efficiency in a standardized Dockerized environment. Each library is tested
for energy consumption in Joules per token generated, and tokens per second are also measured to provide a comprehensive
assessment of performance. Our experiments are conducted on identical hardware configurations to ensure fairness, and
results indicate significant variations in energy efficiency between frameworks. This work aims to guide researchers and
practitioners in selecting the most energy-efficient and performant LLM inference library based on their deployment needs.

Introduction

Cloud computing has become a cornerstone of mod-
ern infrastructure, offering on-demand computing
resources that power many of today’s applications
and services. With the rapid growth of Machine
Learning (ML) workloads and the proliferation of
networked devices, the energy consumption of data
centers has risen to alarming levels. Global data cen-
ters now consume more energy than most countries,
with projections suggesting they could account for
up to 20% of global electricity usage by 2025, sig-
nificantly contributing to global carbon emissions
[1].

The rise of Large Language Models (LLMs) has
revolutionized domains such as natural language
processing and code generation. However, the com-
putational demands of LLMs, particularly during
inference, pose significant challenges in terms of en-
ergy consumption and resource utilization [2][3]. For
instance, GPT-3, with 175 billion parameters, con-
sumed an estimated 1,287 MWh of energy during
training [4]. Although training costs are incurred
once, inference processes are continuous, serving
millions of daily queries and leading to substantial
cumulative energy consumption. For example, GPT-
3’s inference process consumes approximately 0.0003
kWh per query. When scaled to millions of users, this
translates to a significant environmental impact [5].
Consequently, optimizing energy efficiency during
inference has become critical.

Problem Statement

The deployment of large language models (LLMs)
for inference tasks presents a significant challenge in
balancing performance and energy efficiency. While
various inference libraries have emerged to accelerate
LLM processing, their energy consumption and envi-
ronmental sustainability remain underexplored. Pre-
vious studies have extensively evaluated the perfor-
mance capabilities of popular open-source inference
libraries [6]. However, the energy efficiency of open-
source inference libraries has not been thoroughly
analyzed in past literature. Since the inference of
large LLMs is performed continuously at large scale
nowadays, increasing the energy awareness of the
inference is becoming more important to promote
sustainability.

In this work, we aim to address the lack of energy
awareness in modern inference libraries for LLMs.
Specifically, we propose a streamlined evaluation
process to evaluate the energy efficiency of inference
libraries. By providing users more insight in the
energy efficiency associated with inference libraries,
we hope that users will make a more informed choice
between different inference libraries and encourage
the adoption of energy efficient solutions.

Solution Proposal

This study proposes a comparative analysis of four
popular LLM inference libraries, vLLM [7], Ollama
[8], MLC [9] and TensorRT-LLM [10] to evaluate their
energy efficiency and performance in a Docker con-
tainerized environment. These libraries were chosen
because of their widespread use and optimization for



accelerating LLM inference tasks.
To achieve a reliable comparison, we will utilize

the SWE-bench [11] benchmark dataset for solving
real-world GitHub issues. The energy efficiency and
performance will be measured using EnergiBridge
[12], a cross-platform measurement utility. By col-
lecting metrics from EnergiBridge, we will be able
to evaluate the inference libraries by metrics such
as tokens per second and energy per token. All ex-
periments are conducted in controlled containerized
Docker environments to ensure reproducibility and
mimic realistic scenarios, such as cloud deployments.

Contributions

The main contribution of this paper is the insight
into the energy consumption of the different infer-
ence libraries for LLMs: vLLM, Ollama, MLC and
TensorRT-LLM. Specifically, given that each library
has to work with the same pre-trained LLM, how
much energy does each library consume per token
on solving real-world GitHub issues. Besides that, in-
sight is also given in the raw performance measured
in tokens per second produced by the inference li-
brary.

We have made our code open-source [13], in or-
der to make our obtained results reproducible. Fur-
thermore, we also encourage fellow green energy
researchers to use our energy efficiency evaluations,
in order to gain more awareness in the area of energy
efficiency.

Related work

Recent papers have shown significant improve-
ments in the accuracy of Natural Language Process-
ing (NLP) tasks. State-of-the-art performance was
achieved for a translation task from French to English
by Bahdanau et al. [14] by leveraging a single neural
network. Another paper by Luong et al. [15] im-
proved on this idea by adding additional complexity
in the form of attention layers which yielded even bet-
ter performance. The use of additional complexity in
these models tends to come with better performance,
as was the case for the models produced by Peters
et al. [16]. They utilize "deep contextualized" word
representations which enables better performance
but require more computational power. As models
have grown in complexity, they are usually trained in
large datacenters with specialized hardware instead
of general purpose servers. Research has shown that
most of these datacenters do not derive their energy
from carbon-neutral sources [17] which poses signifi-
cant harm to the environment. While aforementioned
research has shown that training models exhibit a

positive correlation between performance and energy
usage, much less is known about the energy usage
of the inference phase of a model. Recent research
effort has focused on developing tools that are able
to monitor the energy usage of a single prompt to a
Large Language Model [18]. The key idea behind this
is that LLMs are trained once, but are used poten-
tially indefinitely. So the energy usage of the training
phase is bounded, but the energy usage of the in-
ference is unbounded if the model is continuously
deployed.

Recent studies further emphasize that the cumula-
tive energy used for serving LLMs can far exceed the
one-time training cost. For example, a year of con-
tinuous inference may require over 25× the energy
needed for training [19]. While early work focused
predominantly on training-phase energy footprints,
the growing prevalence of LLM deployment has
spurred efforts to measure inference efficiency with
greater fidelity. Tools such as MELODI, developed
by Husom et al. [20], profile per-request energy us-
age by leveraging NVIDIA’s NVML (via nvidia-smi)
alongside CPU sensors. Similarly, Wilkins et al. uti-
lize the PowerAPI/PyJoules framework to capture
low-level power metrics during inference [21]. These
methodologies enable researchers to quantify metrics
like joules per token and to pinpoint inefficiencies
in the inference pipeline. Empirical evaluations by
Samsi et al. [22] and Stojkovic et al. [23] have fur-
ther demonstrated that optimizations such as tun-
ing batch sizes, multi-GPU configurations, GPU fre-
quency scaling, and power capping can yield substan-
tial energy savings. Moreover, comparative studies
by Luccioni et al. [19] underscore that task-specific
models are significantly more energy-efficient than
expansive general-purpose LLMs, highlighting the
need for energy-aware deployment strategies.

Background

Large Language Model

Large Language models are AI models that are
trained on a large corpus of text so that they can
accurately predict the next token given some input
sequence of tokens. Tokens are the units of text that
an LLM processes. What constitutes a token depends
on the tokenization method used by the LLM, it could
be a word, part of a word„ or even a single character.
For example, the word "unbelievable" might be tok-
enized as ["un", "believ", "able"], other tokenizations
are obviously possible. Once the input is tokenized,
each token is converted to a high dimensional vec-
tor which encapsulates the meaning of that word.
This sequence of tokens which is now a sequence
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of vectors, is passed through an attention block fol-
lowed by a multilayer perceptron block, this process
is repeated some number of times and it changes
each vector to represent the context it is in [24]. At
the final layer, the model’s hidden states contain the
context for all tokens in the sequence. This context
is then used to predict the most likely next token,
and the process can be repeated to generate an entire
sequence of text, which becomes the output of the
LLM.

Quantization

An LLM has weights that are trained according to
some training set; the number of parameters can be
huge, i.e., the GPT-3 model has 175 billion of them
[25]. FP32 (32-bit floating point) and FP16 (16-bit
floating points) are the standard formats used in
training LLMs, which provide high accuracy but also
incur a high computational cost. Quantization is the
act of converting high-precision datatypes like FP32
into lower ones, which have fewer bits and thus use
less memory and allow faster computations. The art
of quantization is to significantly reduce the computa-
tional cost needed to run the model while minimizing
the performance loss incurred. Due to compatibility
constraints, the four tested inference libraries imple-
ment three different quantization techniques. Below
is the description of each of them.

GGUF is a file format that can be used for storing
(quantized) models [26]; it has executors based on
GGML, a Tensor library for machine learning (similar
to PyTorch and TensorFlow) [27]. Most GGUF quan-
tizations are based on the K-Quants method. It com-
presses model weights into a 4-bit representation by
employing per-channel or per-group scaling factors
to preserve the relative magnitudes of the original
weights, thereby reducing memory footprint while
maintaining acceptable accuracy. However, there are
also combined-bit quantization types where only cer-
tain weights are quantized. For example, Q4_K_L
quantization, a GGUF quantization type, uses 8-bit
quantization for the embedding and output weights
and 4-bit for the others [28].

Furthermore, 4-bit AWQ (Activation-aware Weight
Quantization) leverages activation statistics to more
accurately map 32-bit or 16-bit weights into a 4-bit in-
teger format, thereby reducing quantization error and
preserving model performance. By incorporating ac-
tivation information into the quantization process,
4-bit AWQ provides a robust balance between ag-
gressive compression and minimal loss in inference
quality.

Moreover, The q4f16_1 quantization approach
from the MLC-LLM inference library converts FP16
weights into a 4-bit format while using 16-bit float-

ing point scaling factors to mitigate quantization
errors. This scheme achieves a favorable trade-off
between model compression and accuracy, making it
particularly effective for deployments in memory-
constrained environments. This quantization ap-
proach is based on the grouping quantization meth-
ods, which are discussed in [29] and [30].

Inference Libraries

Given some trained LLM with weights, inference
libraries are responsible for loading the model in
memory efficiently and to receive some input, com-
pute the output based on the model weights and
deliver that back to the user. Inference libraries uti-
lize various optimizations to speed up this process,
such as quantization which was described earlier.
Some libraries have hardware-specific optimizations;
they can restructure the computations optimally to
achieve better performance. Pruning is another tech-
nique where the library might remove small weights
since they likely have small influence on the outcome
in order to boost computational speed. They can also
fuse layers together sometimes so that multiple oper-
ations are performed in one go instead of one by one.
A common fuse operation is to combine a matrix mul-
tiplication followed by a ReLu function. Normally,
the matrix multiplication would be performed first,
storing the result in memory and then applying the
ReLu function. In a fused operation both the matrix
multiplication and ReLu function happen in a single
operation, without the need for storage of intermedi-
ate results. The following paragraphs explain each
of the analyzed inference libraries in detail.

vLLM is a fast and flexible library for LLM infer-
ence and serving. Originally developed in the Sky
Computing Lab at UC Berkeley, it is now maintained
by a community of contributors [31]. It employs ar-
chitectural innovations such as PagedAttention and
continuous batching, along with optimized CUDA
kernels—including integration with FlashAttention
and FlashInfer [31]. This way, it achieves a 2- to 4-
fold performance improvement [32] compared to the
baseline FasterTransformer [33] and Orca [34]. It sup-
ports multiple quantization formats, including GPTQ,
AWQ, INT4, INT8, FP8, and GGUF, while providing
seamless integration with popular HuggingFace mod-
els and broad hardware compatibility across NVIDIA
GPUs, AMD devices, Intel CPUs, IBM Power CPUs,
TPUs, and AWS Trainium/Inferentia accelerators. A
comparison by Naman (2024) suggests that vLLM
shines when the user needs to handle many requests
efficiently [35], while a comparative analysis by Aish-
warya Goel and Rajdeep Borgohain states that vLLM
stands out with its innovative features like PagedAt-
tention and Continuous Batching, which significantly
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enhance inference speed and memory efficiency [36].

TensorRT-LLM, the successor of FasterTransformer,
is developed and maintained by NVIDIA, compil-
ing LLMs into highly optimized TensorRT engines
that are deployed with a Triton Inference Server
to leverage in-flight batching, paged KV caching,
and multi-GPU or multi-node inference [37]. It sup-
ports advanced quantization schemes such as FP8,
FP4, INT4 with AWQ, and INT8 formats and of-
fers a flexible API with both an ahead-of-time com-
piled TensorRT backend and a PyTorch backend for
rapid experimentation, making it particularly effec-
tive on NVIDIA CUDA GPUs for high-throughput
and energy-efficient production deployments. While
its superiority with NVIDIA hardware is well-known
[36], this is its only hardware compatibility optimiza-
tion and can pose compatibility problems for many
users.

Ollama is a popular inference library that builds
upon the llama.cpp framework, which implements
Meta’s LLaMa architecture in efficient C/C++,
thereby optimizing the execution of LLM models
based on the LLaMa design. Ollama employs a
client-server architecture to execute LLM text gen-
eration efficiently [38]. In this system, the user in-
teracts with a client while a Go-based server han-
dles backend processing by calling into the highly
optimized C/C++ implementation of llama.cpp to
perform model quantization using GGML/GGUF
formats. Additionally, Ollama supports GPU acceler-
ation on both NVIDIA and AMD devices and utilizes
the Metal API on Apple platforms, automatically se-
lecting the optimal model based on the execution
environment [39], which makes it well-suited for lo-
cal inference with ease of deployment and robust
model management, even though it may not scale as
well for high-throughput production settings [35].

MLC-LLM, also known as MLCEngine, is designed
as a universal deployment engine that bridges server
and local inference by leveraging techniques such
as PagedAttention and fused operators to enhance
performance [40] [41]. It utilizes machine learning
compilation via Apache TVM to generate portable
GPU libraries, enabling efficient operation on a wide
range of hardware, including NVIDIA CUDA, AMD
ROCm, Metal, Android, iOS, WebGPU, Intel Gaudi,
and AWS Inferentia [42]. It supports 3-bit and 4-bit
group quantization. In a comparison conducted by
Rick Zhou, Larme Zhao, Bo Jiang, and Sean Sheng
[43], MLC-LLM offers the lowest Time to First Token
(TTFT) and maintains high decoding speeds at lower
concurrent user loads, though it struggles to remain
competitive with other inference libraries as user
demand increases.

Methodology

This section outlines the experimental procedures
and setup used to evaluate the energy efficiency and
performance of the inference libraries. Our method-
ology follows a systematic workflow that ensures
consistency, reproducibility, and fairness across ex-
periments. Figure 1 presents a high-level workflow
diagram, detailing the key phases. For each infer-
ence library, one experimental round is initiated by
launching the Docker container that activates the
EnergiBridge tool to measure energy consumption
during both the image loading and the LLM infer-
ence process. During each run, the experiment logs
the energy used, the number of tokens generated,
and the duration for generating every response for
the prompts from the SWE-bench dataset. The entire
experiment repeated 10 times per library while incor-
porating adequate cooling-off periods. The logged
metrics are then forwarded to a postprocessing en-
gine that computes the average tokens per second
and energy per token for each library while eliminat-
ing outliers.

Docker Image Selection

All inference libraries will be executed inside a
Docker container to ensure their environments are
as similar as possible. Docker containers impose
overhead in system calls, which leads to additional
energy usage, but this overhead is the same for each
inference library and thus does not affect comparison
[44]. Also, Docker containers are industry standard
for deploying LLMs at scale as done by Huggingface
[45].

The purpose of the docker image is to keep the en-
vironment as consistent as possible while minimizing
variability. We chose the "python:3.10.16-bookworm"
image as a base for each inference library since this
was a stable release and compatible with each library.
Every docker image only had its necessary packages
installed to run the inference library and maintain
stability and consistency throughout the experiments.

Inference Libraries

The inference libraries have been chosen primarily
based on their popularity and token decoding speed.
To explicate, Ollama has been chosen as it is the
most popular library on GitHub, with over 135k stars,
which serves as a baseline for our experiment. It is
essential to mention that Ollama’s back-end inference
engine is llama.cpp. Furthermore, vLLM, TensorRT-
LLM, and MLC are all comparable in token decoding
speed and faster than most of their competitors while
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Figure 1: Methodology workflow diagram

being popular on GitHub and have therefore been
chosen [46].

Text Generation Inference by Hugging Face [47]
and LMDeploy [48] are libraries that have not been
selected for the experiments but have comparable
decoding speeds [49]. An overview of the different
inference libraries can be found in Table 1, including
the number of GitHub stars each library has.

Table 1: Overview of different open-source inference libraries
compared in experiments.

Inference Library Quantization Type GitHub Stars

Ollama Q4_K_L 135k
vLLM 4-bit AWQ 43.1k
MLC q4f16_1 20.3k
TensorRT-LLM 4-bit AWQ 10.1k

Large-Language-Model

Our choice of LLM to experiment with
is the quantized to 4-bit version of
Qwen2.5-Coder-14B-Instruct model with 14B
parameters [50]. This LLM is chosen because of its
performance and accuracy for coding problems and
because it fits within our resource constraints. A
quantized model was selected to reduce memory
requirements. However, because of compatibility
issues, it was not possible to use the identical
quantized model for every inference library. Table
1 overviews the exact quantization used with each
inference library. The quantization types were chosen
based on their best performance and efficiency with
comparable VRAM usage on the GPU.

Dataset

The SWE-bench [11] benchmark dataset for solving
real-world GitHub issues was chosen for the experi-
ments because it represents a genuine, complex sce-
nario that ensures our findings accurately reflect the
energy efficiency and performance of inference li-
braries in practical settings. This dataset, which has
been employed in various previous academic stud-
ies [11, 51, 52, 53], was refined for our purposes by
selecting 80 entries. This number was determined
by the experimental design, where each of the four
libraries is evaluated over 10 iterations, while also
ensuring that the combined execution time remains
within the greenserver’s access window.

In addition to the dataset selection, effort was in-
vested in designing the prompt to provide the lan-
guage model with a robust contextual foundation.
The prompt is crafted to contain essential contex-
tual information derived from the repository, such as
its identity, the commit history that delineates both
the base and environment setup commits, as well
as versioning and instance details. It also contains
a description of the issue alongside some hints. Al-
though we had the option to include the complete
descriptive text of the issue to offer even more con-
text, doing so would have expanded the prompt to a
size too large to fit on the available hardware. Never-
theless, we are confident that the constructed prompt
contains sufficient detail to facilitate accurate and
reliable responses from the language model without
supporting hallucinations.

Experimental setup

Every inference library was evaluated through 10
iterations, with each iteration corresponding to a
complete pass over the SWE-benchmark dataset of 80
selected prompts. For each new experiment iteration,
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the processing order of the libraries was randomly
shuffled to mitigate any order bias.

For each run, a dedicated CSV file was created in
the respective library’s folder to log performance met-
rics, including the measured energy consumption. A
60-second delay was introduced between each library
to ensure system stability and to avoid influence from
tail energy usage between libraries.

Moreover, the experiments were conducted using
identical parameters across all inference libraries. In
particular, we configured the model with the follow-
ing settings:

• Context Window: The total context window (in-
put + output) was set to 32768 tokens. Out of
these,

• Output limit: MAX_OUTPUT_TOKENS was fixed at
4096 tokens, representing the maximum number
of output tokens generated.

• Temperature: A value of 0.0 was used to achieve
as much as possible deterministic results.

• Seed: Fixed at 0 to ensure the highest level of
determinism in the experimental outcomes.

• Repetition Penalty: Set to 1.05 to control repet-
itive outputs (default).

• Top-K: Configured to 20 to reduce the proba-
bility of generating incoherent or non-sensical
content (default).

• Top-P: Set to 0.8 to work in conjunction with
the Top-K setting (default).

The experiments were conducted using the
GreenServer from the Software Engineering Research
Group (SERG) at TU Delft. Below are the key specifi-
cations of the machine:

• CPU: AMD Ryzen 9 7900X (12x 4.7GHz)
• Memory: 64GB DDR5 (2 x 32GB)
• Storage: 2TB Kingston Fury Renegade M.2 PCIe

4.0 NVMe SSD
• Video Card: NVIDIA RTX4090 24GB

Energy Measurement Process

We have used the EnergiBridge tool to measure the
energy used by the GPU and to collect energy-related
metrics, such as energy used in Joules. In each docker
container, we install the relevant packages and depen-
dencies for the respective inference libraries. These
built images are then run on the experimental ma-
chine to extract energy efficiency metrics using En-
ergiBridge.

Furthermore, within a container, we calculate to-
ken metrics, such as tokens per second and the total
time taken by the inference library. This is then sub-
sequently stored in a CSV file by mounting a volume
on the host machine to access the results. For the

measurement of energy efficiency, we opt to use the
energy per token metric as it is a widely used indi-
cator for measuring energy efficiency for LLMs [54]
[55].

Postprocessing

After the results are extracted from the experiment,
we remove outliers from the data in order to get a
better view of the results, since it is possible that cer-
tain runs could produce faulty results due to several
reason, for example machine failure and unexpected
scenarios. We removed such outliers by removing
data instances that differ from the mean by more
than 2.9 standard deviations.

Results

Library
Energy/Token (J) Tokens/Second

Mean Std Dev Mean Std Dev

MLC 4.47 0.01 56.49 0.01
Ollama 4.41 0.02 74.46 0.04
vLLM 4.63 0.02 73.85 0.18
TensorRT 3.54 0.01 87.35 0.04

Table 2: Performance metrics of the four LLM inference libraries

Table 2 presents the performance metrics for the
four inference libraries. In terms of energy efficiency,
TensorRT-LLM is the most economical, consuming
approximately 3.54 J per token on average, with a low
standard deviation (SD) of about 0.01 J, which reflects
a high degree of consistency in energy usage. By
contrast, both Ollama and MLC require substantially
more energy per token, averaging around 4.41 J and
4.47 J respectively, while vLLM exhibits the highest
consumption at approximately 4.63 J per token.

Regarding throughput, TensorRT-LLM again
demonstrates superior performance by generating
roughly 87.35 tokens per second, with minimal vari-
ability (SD ≈ 0.04). Ollama and vLLM achieve in-
termediate rates of about 74.46 and 73.85 tokens per
second, respectively, whereas MLC lags behind at
approximately 56.49 tokens per second. These find-
ings indicate that TensorRT-LLM not only delivers
the best energy efficiency but also excels in token
generation speed.

Figures 2 and 3 illustrate the distributions of en-
ergy consumption per token and tokens per second
for the libraries. The data for TensorRT-LLM is no-
tably tightly clustered, underscoring its stable and
efficient performance, while vLLM shows greater
variability. Both Ollama and MLC maintain moder-
ate consistency, though at higher energy costs.
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Overall, the results confirm that TensorRT-LLM
outperforms the other libraries in terms of both en-
ergy efficiency and throughput. Ollama and vLLM
offer competitive token generation speeds at a higher
energy expense, and MLC, despite its lower through-
put, is the least efficient among the evaluated li-
braries.

Figure 2: Energy per token of MLC, Ollama, vLLM, and
TensorRT-LLM

Figure 3: Tokens per second of MLC, Ollama, vLLM, and
TensorRT-LLM

Discussion

TensorRT-LLM scores both the highest tokens per
second and the lowest energy per token. We did
not expect a single inference library to score best on
both metrics since faster performance usually comes
with additional energy costs. However, the perfor-
mance of TensorRT-LLM could be explained by the
fact that it is developed and maintained by NVIDIA,
and is optimized for NVIDIA GPUs (a NVIDIA GPU
was also used in our experiment). TensorRT-LLM
compiles the model into efficient TensorRT engines,
which is a key factor in TensorRT-LLM’s efficiency. It
sweeps through the computational graph of an LLM,
selecting the best kernel for each operation based on
the available NVIDIA GPU. More crucially, the com-
piler identifies patterns where multiple operations

can be fused into a single kernel [56]. To explicate,
the layer fusion technique attempts to fuse different
layers of a network together while preserving the
behavior, essentially simplifying the network to im-
prove computation speeds [57] and thus reduces the
amount of memory movement between the kernels.

Furthermore, in our evaluation, Ollama and vLLM
performed very similarly in their token per second
metric. Ollama achieves a slightly higher token gen-
eration speed and has a lower energy per token than
vLLM. vLLM has the highest energy per token, ac-
cording to our experiment. A potential reason for
vLLM’s high energy per token could be that the AWQ
quantization method is significantly more energy in-
tensive than the K-Quant method of GGUF is [58].
However, TensorRT also uses the AWQ model and
is much more energy efficient than both Ollama and
vLLM, although TensorRT does have the TensorRT
engine optimizations made in its inference engine
that vLLM does not integrate. So, despite this ad-
vantage in energy efficiency, Ollama was unable to
consume less energy per token than TensorRT-LLM.
Surprisingly, MLC has the lowest token per second
count while consuming energy levels similar to Ol-
lama and vLLM. This was unexpected as MLC also
incorporates optimization during the compilation
process of the model weights into a custom engine.
Yet, MLC natively supports almost any operation
platform after compilation.

Moreover, by leveraging quantization, we are able
to run bigger models on smaller GPUs since quantiza-
tion reduces memory requirements. This conversion
can be done by the other inference libraries as well,
but the difference is that TensorRT also restructures
its computations optimally for the NVIDIA GPU
hardware. Libraries like MLC, Ollama, and vLLM
work across a broader spectrum of hardware (i.e.,
hardware from AMD) and are thus not optimized
for any single platform, which could explain their
inferior performance in this experiment. Nonethe-
less, NVIDIA hardware has a market share of over
90% in the AI supply chain because of their superior
performance in ML tasks [59] [60].

Our results suggest that developers should con-
sider energy sustainability when choosing inference
libraries. If the user is serving on NVIDIA GPUs,
TensorRT-LLM is the preferred inference library.
When TensorRT-LLM is not available (e.g., the hard-
ware is not built on NVIDIA GPUs), one could opt
for Ollama as the preferred option when generation
speed and energy efficiency are the primary require-
ments.

We further suggest developers of open-source infer-
ence libraries to optimize LLM inference libraries for
specific computing platforms, rather than developing
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cross-platform inference libraries. Ensuring cross-
platform compatibility introduces inherent runtime
overhead, making it a less optimal solution when
good energy efficiency is a desired goal to achieve.

Limitations

Due to compatibility constraints among inference
libraries, it was not possible to utilize a single, uni-
fied quantization method across all evaluated frame-
works. This introduces a bias due to minor varia-
tions in the underlying model weights. While our
experiment setup accurately represents realistic sce-
narios—where developers must often navigate quan-
tization compatibility—it slightly complicates direct
library comparisons, as differences in performance
may partly reflect quantization method efficiency
rather than solely library optimizations. However, it
is worth noting that inference libraries lacking sup-
port for more efficient and/or accurate quantization
methods inherently face limitations in achieving op-
timal efficiency, thus realistically influencing their
practical utility.

Another limitation of our research is that we have
not experimented with batched inferences, that is,
the simultaneous inference of multiple prompts in
batches. Our approach feeds the inference libraries
one prompt at a time, with a batch size of 1. In a
realistic real-world setting, many inference libraries
are tasked with inferring prompts in batches to make
effective use of resources. This limitation of our work
could affect the results, as inference libraries may
behave differently when batched inference is utilized
instead of inferring single prompts. In addition, with
the limited available hardware we had to work with,
executing a sizeable batched inference was impos-
sible as memory constraints on the GPU would be
broken.

Lastly, an important limitation of our study is that
we were unable to evaluate the accuracy of the quan-
tized models and inference libraries against their
full-precision base model using metrics such as KL
divergence or perplexity (PPL). Due to the GPU mem-
ory constraints, we could not run the complete un-
quantized models, which would have allowed us
to quantify the impact of quantization on response
quality and accuracy.

Conclusion and Future Work

This research has explored the energy efficiency and
performance of different LLM inference libraries:
MLC, Ollama, vLLM and TensorRT-LLM. Accord-
ing to the results, TensorRT-LLM performed the best

by having both the highest tokens per second and the
lowest energy per token. TensorRT-LLM consumed
3538 Joules per token on average and generated 87 to-
kens per second on average, outperforming all other
inference libraries. This indicates that TensorRT-LLM
is the fastest inference library for NVIDIA hardware
while consuming the least energy.

The research area of green energy and energy ef-
ficiency has not yet been widely explored in the
context of LLMs, and this enables interesting op-
portunities for future work. In this work, we have
shown a quantitative analysis of energy efficiency
and performance of four popular inference libraries
for LLMs. Future research that could be built upon
our work could explore the energy efficiency of dif-
ferent hardware, for example, hardware from an-
other mainstream GPU manufacturer, Advanced Mi-
cro Devices (AMD). One must take into account that
TensorRT-LLM will not work in the case of AMD
hardware, since it is developed explicitly for NVIDIA
hardware. It would be interesting to explore which
inference libraries perform best on hardware that is
not from NVIDIA.

Since the development of LLMs and inference li-
braries is at a rapid pace, it also means that more
LLMs and inference libraries will be released in the
future, possibly with better efficiency and perfor-
mance. Thus, it is also interesting to benchmark
other inference libraries, such as TGI [61], SGLang
[62], and LMDeploy [48].

Future research could also explore how different
model quantizations in different inference libraries
impact the quality or accuracy of LLM output com-
pared to the base model. Investigating whether the
subtle trade-offs in quantization and performance
translate to differences in output reliability or fidelity
is crucial in selecting inference libraries for diverse
deployment needs.

Lastly, another related and interesting topic to ex-
plore in future work is the energy efficiency and
performance of including general knowledge ques-
tions in the dataset. In our work, we have exclu-
sively focused on the inference of coding-related
prompts, specifically from the SWE-bench of real-
world GitHub issues. It would be interesting to ex-
plore another common use case of LLMs, answering
general knowledge questions.
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