
Green Llama: A Tool for Monitoring Energy
Consumption and Sustainability in Local LLMs

Philippe A. Henry
ID : 4678605

Anyan Huang
ID : 6168930

Yongcheng Huang
ID : 5560950

Yiming Chen
ID : 5541786

Abstract—Large language models (LLMs) have revolutionized
artificial intelligence by delivering unprecedented performance in
various applications. However, their substantial computational
demands have raised critical concerns regarding high energy
consumption and environmental impact, especially during infer-
ence on local machines. This paper introduces Green Llama,
an innovative command-line tool designed to monitor and ana-
lyze the energy usage of LLMs across CPU, GPU, and RAM
components. By providing prompt-based estimation of power
consumption and translating these metrics into carbon emissions
based on regional energy profiles, Green Llama bridges the gap
between performance benchmarking and sustainability assess-
ment. With integrated features such as mid-session summaries,
detailed reporting, and comprehensive benchmark testing, the
tool empowers developers, researchers, and organizations to
monitor energy consumption, reduce operational costs, and make
environmentally responsible deployment decisions. For more
information, please refer to the repository of Green Llama.

Index Terms—Large Language Model (LLM), Energy Moni-
toring, Carbon Emissions, Sustainability

I. INTRODUCTION

Generative Artificial Intelligence (AI) has experienced rapid
advancements in recent years, with Large Language Models
(LLMs) such as GPT, Gemini, and Claude revolutionizing
natural language processing (NLP) tasks including text gener-
ation, summarization, and translation [12]. While these models
deliver exceptional performance, their deployment requires
substantial computational resources, leading to increased en-
ergy consumption and significant environmental impacts [5],
[9].

In response to these challenges, tools like Ollama have
emerged to address data privacy and resource management
concerns by enabling users to download, store, and execute
LLMs on local machines without relying on cloud-based
services [6]. Local execution provides improved data security,
reduced dependence on external servers, and greater control
over hardware resources. However, running large-scale models
locally also introduces new challenges in energy efficiency
and sustainability, prompting users to consider an additional
criterion when selecting a model: its environmental footprint
[8].

In response to these challenges, we propose Green Llama,
a command-line tool designed to monitor and analyze the
energy consumption and performance of LLMs managed
through the Ollama tool. Green Llama tracks precise resource
utilization across CPU, GPU, and RAM, translating these
measurements into carbon emission estimates according to

regional energy profiles. This capability enables developers,
researchers, and organizations to optimize decision-making,
effectively balancing computational performance with envi-
ronmental responsibility. Inspired by related work such as
EnergyBridge [11], which provides comprehensive insights
into energy consumption patterns, our approach further in-
tegrates performance evaluation with environmental impact
assessment. Our contributions are summarized as follows:

• We propose Green Llama, a command-line tool specif-
ically designed to monitor and analyze the energy con-
sumption and carbon emissions of large language models
(LLMs) running locally.

• Green Llama provides detailed, prompt-based estimations
of CPU, GPU, and RAM energy usage, translates these
metrics into carbon emission estimates using regional en-
ergy profiles, and offers integrated benchmarking, interac-
tive mid-session summaries, and comprehensive reporting
features.

• We make the tool publicly available as an open-source
project, along with detailed documentation to facilitate
adoption and further research.

II. BACKGROUND AND PROBLEM IDENTIFICATION

The rapid expansion of large language models (LLMs)
across various applications has significantly increased the
demand for computational resources, raising critical sustain-
ability concerns due to their considerable energy consumption
and carbon emissions [10]. Training state-of-the-art LLMs
can consume massive amounts of electricity, resulting in
substantial environmental footprints. For instance, Strubell et
al. estimated that training a single transformer-based language
model emits approximately 284 tons of CO2, roughly equiv-
alent to the lifetime emissions of five cars [10]. Even during
inference, the operational energy demands remain significant,
as inference involves billions of computations per prompt,
contributing notably to electricity usage and carbon emissions
[1], [8].

Despite these concerns, developers and organizations face
significant challenges due to limited visibility into real-time
energy usage during LLM inference, particularly in local de-
ployments. Frameworks such as Ollama, designed for privacy
and resource control by enabling local execution of LLMs
[6], further amplify this visibility gap. Currently, there is no
straightforward solution for monitoring energy consumption

https://github.com/D4vidHuang/Green_llama


and estimating carbon emissions in real-time during inference
tasks, hindering optimization for efficiency and sustainability.

Existing benchmarking practices predominantly emphasize
model performance metrics like accuracy, latency, or through-
put, while frequently neglecting energy consumption and
sustainability implications [4], [8]. Though some tools ex-
ist—such as CodeCarbon [3], CarbonTracker [1], and Experi-
ment Impact Tracker [4]—these primarily target model train-
ing or post-execution analysis. None explicitly cater to real-
time monitoring of energy usage and environmental impact
during LLM inference on local platforms like Ollama.

Given this gap, there is an evident need for tools specifically
designed to provide continuous, real-time insights into energy
consumption and carbon emissions for locally deployed LLMs.
Such tools would enable more sustainable and cost-effective
deployment decisions, aligning with broader environmental
goals and supporting the emerging paradigm of ”Green AI”
[8].

III. DESIGN AND IMPLEMENTATION

Green Llama is designed to monitor the energy consumption
and environmental impact of large language models (LLMs)
during runtime. As shown in figure 1, Green Llama provides
users with a comprehensive understanding of how their models
utilize computational resources, enabling informed decisions
to optimize performance and sustainability. This section out-
lines the key functionalities of Green Llama, focusing on
its ability to estimate metrics, provide mid-conversation sum-
maries, generate detailed reports, conduct benchmark testing,
rank models based on environmental impact, and manage
model resources effectively.

Fig. 1. The Overview of Green Llama CLI Tool

A. Metric Estimation

The Metric Estimation feature is at the core of Green
Llama’s functionality. It allows users to monitor the energy
consumption of CPU, GPU, and RAM, providing insights into
the total energy usage during model inference.

1) CPU Energy Consumption (Joule): CPU energy con-
sumption quantifies the electrical energy consumed by the pro-
cessor during model inference. The energy usage is estimated
based on CPU utilization percentage and core count, assuming
a thermal design power (TDP) of 8 watts per core.

2) GPU Energy Consumption (Joule): GPU energy con-
sumption tracks the graphics processing unit’s energy usage
during model execution. Accurate power measurements from
NVIDIA GPUs are obtained using the NVIDIA Management
Library.

3) RAM Energy Consumption (Joule): RAM energy con-
sumption captures the energy footprint associated with the
memory subsystem. The consumption is estimated based on
the total memory size and usage percentage, assuming a power
consumption rate of 3 watts per 8GB of RAM.

4) Total Energy Consumption (Joule): Total energy con-
sumption provides a comprehensive measurement by aggregat-
ing energy usage across all monitored hardware components.
This metric offers a holistic view of the system’s overall energy
requirements during model operation.

5) Carbon Emissions (gCO2): Carbon emissions metrics
translate total energy consumption into environmental impact
by applying region-specific carbon intensity factors, thus quan-
tifying the carbon footprint of model execution in terms of
carbon dioxide emissions.

The metric estimation example can be seen in Figure 2.

B. Mid-Conversation Metric Summaries

During interactions with the tool, users can access Mid-
Conversation Metric Summaries to gain a quick overview of
the performance and energy consumption of their models. This
feature provides aggregated statistics, such as average energy
usage, carbon emissions and so on. Users can request these
summaries at any point during a conversation, allowing them
to monitor trends and make adjustments as needed without
interrupting their workflow.

Fig. 2. An Example of Metrics and Summary

C. Interactive Result Viewer Interface

As part of the Green Llama system, we implemented an
interactive, browser-based report viewer to make the energy
benchmarking results more accessible and interpretable. This
feature was developed using React.js and integrates directly
with the benchmarking pipeline.



The viewer supports multiple reporting modes, includ-
ing benchmark results, model history summaries, and per-
conversation statistics. Key features of the interface include:

• Pie Chart Visualizations: For each report, a pie chart
shows the breakdown of total energy consumption across
CPU, GPU, and RAM components.

• Fact-Based Emission Equivalents: Carbon emissions
are contextualized through real-world analogies such as
sheets of paper, kilometers walked, emails sent, and
Google searches.

• Metric Graphs: Each energy or emission metric is
visualized with a plot that summarizes its distribution
across prompts (e.g., using box plots).

• Prompt-Level Tables: Below each graph, detailed tables
provide a breakdown of energy usage per prompt, allow-
ing for fine-grained analysis.

The viewer dynamically parses raw CSV logs and generates
visual summaries without requiring manual preprocessing. It
allows researchers and practitioners to interactively explore
performance trends, spot anomalies, and compare models with
ease.

D. Benchmark Testing

The benchmark testing module in Green Llama is de-
signed to comprehensively evaluate model performance across
different tasks. Our implementation supports three types of
benchmark tests: text generation, code generation, and
chat testing. Upon entering the benchmark mode, users are
prompted to choose one of these options.

For text generation tasks, the system loads a dataset (using
the Wikitext-2 raw test split) and processes a subset of the data
to keep execution time reasonable. Specifically, the first two
prompts are selected for the initial benchmark run. In addition
to these standard prompts, a set of five novel prompts is
used to assess the model’s performance in creative generation
scenarios. This two-tier testing approach not only evaluates
the model on standard tasks but also examines its adaptability
and performance under more diverse conditions.

Each prompt is processed by a measurement function that
computes key metrics, including CPU usage and elapsed time.
Notably, the CPU usage is normalized by dividing the raw
usage by the number of available CPU cores. This normal-
ization ensures a fair comparison across different hardware
configurations. The benchmarking routine leverages Python’s
multiprocessing module and the rich library for in-
teractive command-line display, which allows for real-time
feedback on the progress of the benchmark and detailed metric
summaries.

Inspired by the methodologies presented in benchmark
studies such as [7], our implementation extends these ideas
by integrating energy consumption metrics directly into the
evaluation process. The referenced work provides a detailed
framework for assessing both performance and efficiency of
language models, and it serves as a key foundation for our
approach.

After the benchmark run, the results – including prompt
texts, normalized CPU usages, and execution times – are
aggregated and stored. These metrics are then used to update
the real-time summary display and are persistently saved in
JSON and CSV formats. This persistent storage not only
supports detailed post-analysis but also feeds into the model
ranking functionality, where models are compared based on
their average CO2 emissions derived from these benchmark
metrics.

Overall, our benchmark testing implementation provides an
integrated framework that facilitates:

• Flexible Task Selection: Users can choose between text
generation, code generation, or chat testing benchmarks.

• Robust Metrics Collection: Both standard and novel
prompts are utilized to obtain comprehensive perfor-
mance data.

• Normalized Performance Metrics: CPU usage is nor-
malized based on the number of cores, ensuring consis-
tency across varied hardware.

• Interactive and Persistent Reporting: Real-time sum-
maries and persistent logging enable both immediate
insights and long-term analysis.

This implementation not only enables fair and detailed
comparisons among different LLMs but also supports our
overall goal of linking model performance with environmental
sustainability by providing accurate and actionable energy
consumption data [10].

E. Ranking of Models

To further assist users in selecting sustainable models,
Green Llama includes a Ranking of Models feature. Ranking
of models is done based on average CO2 cost estimation
per prompt, based primarily on benchmark data for a fair
comparison. Given that we present three different types of
benchmarks, a different table is rendered for each. Models are
only added to the table if they have the selected benchmark’s
results. Additionally, a conversation history table is added,
which ranks models based on the interactions the user has
had with them, Models are added as soon as they have been
utilized one time. For an example of model rankings refer to
Figure 3

F. Model Management

Green Llama simplifies the process of managing models
through its Model Management capabilities. Users can view
a list of available models, download new ones from the
Ollama repository, and handle missing models seamlessly.
This ensures that users have access to the resources they need
while maintaining a streamlined workflow. For an example of
the possible workflow refer to Figure 4



Fig. 3. An Example of Model Rankings

Fig. 4. An Example of Model Management Interaction: Not finding a new
model and downloading a new model (which is then listed in the locally
available models).

IV. RUNTIME MONITORING EXAMPLES

A. Live Demo

For a live presentation of all features refer to the following:
Live Demo Video

B. Benchmarking

In this section, we illustrate a complete end-to-end bench-
mark workflow using Green Llama. The process involves three
major steps: (1) choosing the benchmark mode, (2) running
multiple rounds of prompts and observing intermediate results,
and (3) generating a final summary of metrics.

Fig. 5. CLI interface for selecting the benchmark mode (e.g., text generation,
code generation, or chat testing).

As shown in Figure 5, the user begins by launching the
Green Llama CLI and is prompted to select one of three
benchmark modes: Text Generation, Code Generation, or
Chat Testing. Once the user chooses the desired mode, the
system prepares a corresponding set of prompts or tasks that
will be used to measure the model’s performance and resource
consumption.

Fig. 6. Intermediate benchmark results displayed during execution.

Next, the benchmark is executed in multiple rounds (Fig-
ure 6). Each round processes a certain number of prompts,
providing intermediate results such as:

• Elapsed Time (s) for each prompt
• Normalized CPU Usage (%) across available CPU cores
• Other metrics (e.g., GPU usage, RAM usage, energy

consumption) if enabled
These intermediate summaries help users observe how the
model behaves as it processes different prompts and can
inform early adjustments if any issues or inefficiencies arise.

Upon completion of all benchmark rounds, Green Llama
generates a final summary report as depicted in Figure 7.
This report aggregates the measurements from each prompt
and displays:

https://youtu.be/_72IJYtW0MI


Fig. 7. Final summary of benchmark results after completion.

• Averaged metrics (e.g., average CPU energy, total energy
consumed, carbon emissions, etc.)

• Overall response times and the total number of prompts
tested

• Most and least costly prompts, helping to pinpoint which
queries consume the most resources

With this detailed summary, developers and researchers can
quickly identify performance bottlenecks, compare different
models, and make informed decisions to optimize both per-
formance and sustainability. All data from these benchmarks
are also logged to JSON/CSV files, enabling further offline
analysis and integration into other tools.

C. Interactive Web-Based Report Viewer

To present the results in a more intuitive and accessible way,
we use the interactive report viewer described in Section III-C.

Fig. 8. Frontend showing energy distribution pie chart and equivalent carbon
impact facts.

Figure 8 shows an example report layout: on the left, a
pie chart summarizes the proportion of energy used by CPU,
GPU, and RAM; on the right, real-world equivalents for
carbon emissions (e.g., paper, walking distance, emails) help
contextualize the results.

As shown in Figure 9, the viewer plots energy metrics
across prompts using box plots, making it easy to identify
variability and outliers. The indexed x-axis corresponds to
unique prompts, each run multiple times during benchmarking.

V. TESTING AND VALIDATION

To ensure the accuracy and reliability of Green Llama’s
energy monitoring capabilities, we conducted a series of
validation tests across CPU, GPU, and RAM components.

Fig. 9. Box plot of energy metrics grouped by prompt index.

These tests were designed to verify the validity of the returned
values, evaluate the behavior of the system under controlled
conditions using mock testing, and compare the results with
an established tool, CodeCarbon.

For the validity of returned values, we implemented unit
tests to confirm that the energy consumption values for CPU,
GPU, and RAM are within expected ranges. For example, the
CPU power measurement test ensures that the returned power
value is greater than zero under normal operating conditions.
Similar tests were conducted for GPU and RAM, verifying that
the power and energy values are non-negative and consistent
with the expected behavior of the hardware.

In the mock testing, we simulated the behavior of the energy
tracking components to isolate and test specific functionalities.
By mocking the EnergyTracker class, we validated that the
system correctly calculates energy consumption and elapsed
time without relying on actual hardware measurements. This
approach allowed us to test edge cases and ensure that the
system behaves predictably under various scenarios.

Finally, we performed comparative testing with CodeCarbon
[2], a widely used tool for estimating energy consumption and
carbon emissions. For CPU, GPU, and RAM, we compared
the energy consumption values calculated by Green Llama
with those provided by CodeCarbon. The results demonstrated
consistency between the two tools, with minimal deviations
within 0.0001. This comparison validates the accuracy of
Green Llama’s energy tracking algorithms and confirms its
suitability for real-world applications.

These validation steps collectively ensure that Green Llama
provides reliable energy consumption estimation metrics, mak-
ing it a robust tool for monitoring the environmental impact
of large language models.

VI. DISCUSSION

Green Llama demonstrates that it is feasible to deliver de-
tailed and real-time sustainability analytics for large language
models running locally. Through careful engineering of metric
estimators, session logging, and browser-based reporting, the
tool offers both technical rigor and user-oriented accessibility.

Our implementation relies on multiple measurement strate-
gies: GPU energy is monitored in real time via NVIDIA’s
PyNVML library, while CPU and RAM energy are estimated
based on dynamic usage statistics combined with assumed



power profiles. This hybrid design balances accuracy with
broad hardware compatibility. Carbon emissions are computed
based on total energy and country-specific average carbon
intensity, following well-established conversion practices. Al-
though real-time carbon data (e.g., from CO2 Signal) is not
yet integrated, the system is modular enough to support such
extensions.

Importantly, Green Llama’s reporting capabilities go beyond
static summaries. Users can track metrics mid-conversation
via summaries, conduct structured benchmarking with stan-
dardized prompts, and inspect results interactively in the
browser. The web viewer visualizes energy breakdowns and
emissions with pie charts, metric plots, and contextual real-
world equivalents, reinforcing usability and interpretability.
These features make it practical to compare models not just
by performance, but also by environmental cost.

A noteworthy finding during benchmark testing is that
LLaMA 3.2 1B, with 1.24 billion parameters, consistently
consumed less energy than Gemma 3 1B. This illustrates that
model size alone does not determine energy efficiency, and
that architectural choices and hardware-level behavior play a
critical role.

Overall, Green Llama provides a novel and effective ap-
proach to sustainability-aware model development. Its CLI
design enables seamless integration into existing workflows,
while its reporting tools make sustainability metrics action-
able. The implementation choices reflect a balance between
measurement precision and system robustness, paving the way
for future enhancements like live carbon API support, finer-
grained CPU metrics, and deeper model introspection.

VII. FUTURE WORK

Several directions could extend the capabilities of Green
Llama. First, we plan to replace the current static energy
estimation models with direct hardware power measurements
where supported, using interfaces like Intel RAPL or Apple’s
energy diagnostics. This would improve accuracy, especially
in high-variability systems.

We also aim to support a broader range of platforms,
including AMD GPUs and Apple Silicon, to ensure cross-
device consistency. A key extension will involve making
carbon intensity estimation dynamic—drawing real-time data
from public APIs such as electricityMap—to reflect local grid
conditions at the time of inference.

On the user side, we envision embedding the viewer directly
into LLM deployment dashboards (e.g., via Ollama plugins or
browser extensions). This would allow developers to monitor
emissions in real time during everyday usage. For researchers
and educators, we plan to bundle preset experiments for
teaching green AI principles.

Finally, we are exploring integration with model hosting
platforms to make energy labels part of model metadata,
enabling sustainability-aware model selection by default.

REFERENCES

[1] Lasse F. Wolff Anthony, Benjamin Kanding, and Raghavendra Selvan.
Carbontracker: Tracking and predicting the carbon footprint of training

deep learning models. ICML Workshop on Challenges in Deploying and
monitoring Machine Learning Systems, July 2020. arXiv:2007.03051.

[2] Benoit Courty, Victor Schmidt, Sasha Luccioni, Goyal-Kamal, Mari-
onCoutarel, Boris Feld, Jérémy Lecourt, LiamConnell, Amine Saboni,
Inimaz, supatomic, Mathilde Léval, Luis Blanche, Alexis Cruveiller,
ouminasara, Franklin Zhao, Aditya Joshi, Alexis Bogroff, Hugues de La-
voreille, Niko Laskaris, Edoardo Abati, Douglas Blank, Ziyao Wang,
Armin Catovic, Marc Alencon, Michał Stechły, Christian Bauer, Lucas
Otávio N. de Araújo, JPW, and MinervaBooks. mlco2/codecarbon:
v2.4.1, May 2024.

[3] Benoit Courty, Victor Schmidt, and Sasha et al. Luccioni. Codecarbon:
v2.4.1.
urlhttps://github.com/mlco2/codecarbon, 2024. Accessed April 2025.

[4] Peter Henderson, Jieru Hu, Joshua Romoff, Emma Brunskill, Dan
Jurafsky, and Joelle Pineau. Towards the systematic reporting of the
energy and carbon footprints of machine learning. Journal of Machine
Learning Research, 21(248):1–43, 2020.

[5] Alexandre Lacoste, Alexandra Luccioni, Victor Schmidt, and Thomas
Dandres. Quantifying the carbon emissions of machine learning, 2019.

[6] Hause Lin and Tawab Safi. ollamar: An r package for running large
language models. Journal of Open Source Software, 10(105):7211,
January 2025. Corresponding author: Hause Lin (hauselin@gmail.com,
ORCID: 0000-0003-4590-7039); Co-author: Tawab Safi (asaficon-
tact@gmail.com, ORCID: 0009-0000-5659-9890).

[7] Yotam Perlitz, Elron Bandel, Ariel Gera, Ofir Arviv, Liat Ein-Dor, Eyal
Shnarch, Noam Slonim, Michal Shmueli-Scheuer, and Leshem Choshen.
Efficient benchmarking of language models, 2024.

[8] Roy Schwartz, Jesse Dodge, Noah A. Smith, and Oren Etzioni. Green
ai, 2019.

[9] Emma Strubell, Ananya Ganesh, and Andrew McCallum. Energy and
policy considerations for deep learning in nlp, 2019.

[10] Emma Strubell, Ananya Ganesh, and Andrew McCallum. Energy and
policy considerations for deep learning in nlp. In Proceedings of the
57th Annual Meeting of the Association for Computational Linguistics,
pages 3645–3650, 2019.

[11] Tdurieux. Energibridge. https://github.com/tdurieux/EnergiBridge, 2021.
GitHub repository, accessed April 03, 2025.

[12] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention
is all you need, 2023.

https://github.com/tdurieux/EnergiBridge

	Introduction
	Background and Problem Identification
	Design and Implementation
	Metric Estimation
	CPU Energy Consumption (Joule)
	GPU Energy Consumption (Joule)
	RAM Energy Consumption (Joule)
	Total Energy Consumption (Joule)
	Carbon Emissions (gCO2)

	Mid-Conversation Metric Summaries
	Interactive Result Viewer Interface
	Benchmark Testing
	Ranking of Models
	Model Management

	Runtime Monitoring Examples
	Live Demo
	Benchmarking
	Interactive Web-Based Report Viewer

	Testing and Validation
	Discussion
	Future Work
	References

