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1 Introduction

The exponential growth of machine learning (ML)
models has brought unprecedented potential and so-
phistication, revolutionising various industries. How-
ever, the surge in model complexity comes with a
significant environmental cost, as evidenced by the
escalating carbon emissions associated with training
these models.

Machine learning, a branch of Artificial Intelli-
gence, involves training computers to perform tasks
based on data, without needing constant human in-
tervention [8]. These models learn from a dataset
and are then tested on a separate set. This pro-
cess often involves multiple trials and adjustments to
various settings, called hyperparameters. These ad-
justments lead to increased power consumption and,
consequently, a greater environmental impact. The
environmental cost is influenced by three factors: the
cost of training the model on a single data point, the
size of the training dataset, and the number of ex-
periments performed by adjusting hyperparameters,
with the total environmental cost increasing linearly
with each of these factors [7].

The latest machine learning models require ever-
growing amounts of parameters and power during
training. For example, GPT-2, with its 1.5 bil-
lion parameters, reportedly costs around $50,000 to
train. Even more extravagant, Google’s leading large-
language model is estimated to have used 540 billion
parameters and cost over $8 million to train.

This surge in power consumption translates to a
rise in carbon emissions. The BLOOM model is es-
timated to have produced as much CO2 as a single
passenger taking 25 round-trip flights between San
Francisco and New York. Similarly, GPT-3 is esti-

mated to have generated as much as 502 tonnes of
CO2 equivalent emissions [6].

This constant increase in power consumption and
model size is an example of so-called red AI, in which
the main focus lies on accuracy, no matter the cost. It
is, however, not entirely clear what the benefits are
of optimising this one-dimensional metric. Namely,
in order for linear increases in accuracy to take place
exponentially larger models are needed. The focus on
this single metric is to the detriment of environmental
and economic costs. This results in an environment
in which state-of-the-art becomes the domain of big
corporations who are the only ones to have the re-
sources to train such large models [7].

To foster a more sustainable environment for AI
research, research should strive for efficiency over ac-
curacy. One of the metrics that embodies efficiency
is the total carbon emission emitted during the train-
ing phase of an AI model [7]. However, in the current
state of open-source AI models, there has yet to be a
general consensus on reporting carbon emission data.
For example, roughly 99% of all models on Hugging-
Face do not report emissions, and from the 1% that
do, more than 90% of models automatically reported
the statistics as they used HuggingFace AutoTrain
[3].

As a result, our investigation aimed to assess
whether carbon emissions could be reliably estimated
using readily available information such as dataset
size or model size. This would facilitate researchers in
predicting and disseminating carbon emission data.
By advocating for a shift towards prioritising effi-
ciency, we aimed to foster a more equitable compar-
ison between AI models while simultaneously mit-
igating financial and environmental costs. We de-
veloped a browser extension designed to be utilised
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before training an AI model, allowing researchers to
make informed decisions regarding the environmental
impact of their work.

Our key findings underscore significant disparities
in reported emissions between self-reported and Au-
totrain models on the HuggingFace platform, high-
lighting the imperative for standardised reporting
measures within the AI community. Furthermore, we
identify a relationship between model performance
metrics and carbon emissions, shedding light on the
trade-offs between model efficiency and accuracy in
AI development. As a main contribution, we intro-
duce a novel approach to estimating carbon emissions
for AI models through a Firefox extension, providing
developers with valuable insights to make informed
decisions regarding the environmental sustainability
of their work.

2 Background

2.1 HuggingFace

HuggingFace is a platform on which AI models are
distributed. On HuggingFace a variety of machine
learning models can be downloaded. From state-
of-the-art large language models from Meta to user-
created machine learning models.

In the description of a model on HuggingFace, it is
possible to report on the environmental impact. This
can be used to report CO2 equivalent emissions and
other factors impacting the latter such as geographi-
cal location, GPU, training size etc.

HuggingFace has a feature, called AutoTrain,
which lets the user train their models on the Hugging-
Face servers. This always comes with an automatic
report on the CO2 equivalent emissions. Whereas as
for other ML models providing such information is
optional.

2.2 Carbon Dioxide Equivalent

Instead of talking about power consumption, most
machine learning models report their carbon dioxide
equivalent (CO2-eq). Whilst power consumption can
have a different impact on the planet, depending on

numerous factors, e.g. in which country the electric-
ity was generated, the carbon dioxide equivalent tries
to give an estimation of the exact impact on global
warming.

The concept of CO2-eq involves a weighted aver-
age of all greenhouse gases emitted during a process
relative to their impact on global warming, as de-
termined by their 100-year global warming potential
(100-GWP). CO2-eq is calculated by summing the
products of each gas’s GWP and the total mass emit-
ted, as depicted in Equation 1.

CO2eq =
∑

g ∈ GHG(GWPg ·mg) (1)

where GHG represents the set of all greenhouse
gases, GWPg is the GWP for a gas g, and mg is the
total mass of gas g emitted [4]. Table 1 provides a list
of notable greenhouse gases and their corresponding
100-GWP values.

Greenhouse Gas 100-GWP
Carbon dioxide (CO2) 1
Methane (CH4) 21
Nitrous oxide (N2O) 310
Sulphur hexafluoride (SF6) 23900

Table 1: 100-year global warming potential [4]

2.3 HuggingFace Carbon Estimation

The HuggingFace Autotrain feature incorporates
Code Carbon [1] to estimate CO2-eq emissions. Code
Carbon assesses carbon emissions in real-time rather
than post-training, considering two factors: hardware
energy consumption (kWh) and the carbon intensity
of electricity in the region (CO2-eq/kWh).

The carbon intensity of electricity can differ from
region to region. Depending on how the electric-
ity was generated. In table 2 the carbon inten-
sity is shown for numerous energy sources. Carbon
Code uses this when the Carbon Intensity of a cloud
provider or country is not known upfront [2].
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Energy Source Carbon Intensity (g/kWh)
Coal 995
Petroleum 816
Natural Gas 743
Solar 48
Geothermal 38
Hydroelectricity 26
Nuclear 29
Wind 26

Table 2: Carbon intensity per energy source [2]

3 Methodology

In this section, we describe the approach taken to in-
vestigate carbon emissions of HuggingFace AI mod-
els and the subsequent development of a model for
estimating emissions in cases where the information
is not present. Covering the data collection a sub-
sequent exploratory analysis, followed by the model
development we aim to provide insights into the pro-
cess of assessing and mitigating the environmental
impact of AI technologies.

3.1 Dataset Selection

As the basis of our predictive model, we utilise
a dataset created in a repository mining study
analysing the measurements of 1417 HuggingFace AI
models by Castaño et al.[3] The dataset consists of
the size of the dataset in bytes, CO2 equivalent emis-
sions in grams emitted and performance scores (e.g.
accuracy, F1 score, ROUGE-1 and ROUGE-L).

3.2 Exploratory Data Analysis

To gain a comprehensive understanding of the
dataset and its implications for estimating carbon
emissions of HuggingFace AI models, we conducted
an exploratory data analysis (EDA) encompassing
several key aspects.

Data Overview

With a total of 170k entries of AI models, only 1417
models reported carbon emissions. From those mod-

els, 1301 models reported carbon emissions and at
least one other metric of their model; 111 models
self-reported and 1190 were trained with Hugging-
Face Autotrain. Other metrics include dataset size,
CO2 equivalent emissions, geographical location of
the training, the domain (e.g. NLP or Computer Vi-
sion) and the size of the output model in bytes.

Utilising this information, we could plot a scatter
plot with on the X-axis the model size in bytes and
the Y-axis containing the CO2 equivalent emissions,
as shown in Figure 1. With models being grouped
together in the center, we analysed the outliers and
found that they were all models trained without Au-
totrain.

Figure 1: Distribution of CO2 Emissions vs. Dataset
Size

To compare between Autotrained and self-reported
AI models, we compared the models CO2 equivalent
emissions per dataset size in bytes to see the dif-
ference in their efficiencies. Notably, we found that
the first 150 most efficient models were all using Au-
totrain, and the 6 least efficient models were self-
reported. To determine if a statistically significant
difference exists between the set of models trained
with Autotrain and self-reported models, we utilise
different methods to assess this.

Firstly, we need to perform a test to see if the
datasets are normally distributed, for which we use
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the Shapiro-Wilk test, with the values Pauto =
7.306 × 10−16 and Pnon−auto = 8.422 × 10−6. Val-
ues below 0.05 are not normally distributed, thus, we
cannot utilise a T-test to determine a statistically sig-
nificant difference. We opt to use a Mann-Whitney
U test, which is a non-parametric test suitable for
comparing the distributions of two independent sam-
ples when normality is violated. With a P-value of
P = 1.311× 10−6, it indicates statistically significant
evidence to reject the null hypothesis, suggesting a
difference between the two groups’ distributions.
Subsequently, we explored the number of mod-

els reporting additional information on their training
metrics; the result is shown in table 3. The dataset is
sparsely populated with nearly all data entries report-
ing domain and model size, and roughly half report-
ing accuracy and F1 score performance metrics. Ta-
ble 3 further illustrates that most HuggingFace mod-
els do not report all metrics and that only a hand-
ful of models report all six metrics alongside carbon
emissions.

Metric Times Present
Carbon Emissions 1417
Domain 1362
Model Size 1306
Accuracy 845
F1 Score 775
ROUGE-1 231
ROUGE-L 228
Geographical Location 75
Dataset Size 65

Table 3: Number of times metric is present in dataset

3.3 Feature Selection

Firstly, we determine based on the Mann-Whitney U
test that since a statistically significant difference ex-
ists between the carbon emissions of models trained
with Autotrain and self-reported models, we opt to
only estimate the carbon emissions for models trained
with Autotrain. Due to the higher availability of Au-
totrain models and less absolute variance, we deem
it a higher chance of succeeding compared to the full

set of models.

Based on the data overview and insights gathered
from the exploratory analysis, we have identified sev-
eral metrics that are potentially relevant for pre-
dicting carbon emissions of HuggingFace AI models.
These metrics include dataset size, CO2 equivalent
emissions, domain (e.g., NLP or Computer Vision),
size of the output model in bytes, accuracy, F1 score,
ROUGE-1, and ROUGE-L.

To prepare the dataset for analysis, we include all
available metrics and adjust how we handle categor-
ical variables. Specifically, we use a technique called
one-hot encoding for domain. This method trans-
forms categorical variables into binary columns, rep-
resenting each category separately [5]. By doing this,
we can include these variables in our model without
introducing any biases from how we assign numerical
values to them.

We opt not to use the geographical location of
training as a feature due to its limited presence
within the dataset, and of these locations a substan-
tial amount is unique. The utilisation of one-hot en-
coding might result in a feature that offers little in-
formative value for the intended outputs.

3.4 Model Development

Initially, we performed data preprocessing to address
missing values, scale numerical features, and encode
categorical variables utilising one-hot encoding. Fol-
lowing data preprocessing, the dataset was parti-
tioned into training and testing sets. We partitioned
the dataset into an 80/20 split for training and vali-
dation respectively.

Subsequently, we trained a linear regression model
using the training dataset. The model sought to es-
tablish a linear relationship between a single indepen-
dent variable (predictor) and the dependent variable
(carbon emissions). Post-training, the model under-
went rigorous evaluation using the testing dataset.
Finally, coefficients obtained from the linear regres-
sion model were interpreted to elucidate the relation-
ship between predictor variables and carbon emis-
sions.
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4 Results

4.1 Model Evaluation

In this section, we employ a set of criteria to evaluate
the quality and effectiveness of the model’s outputs,
ensuring a thorough assessment of its performance.
Due to the task at hand being a regression task, we
utilise root-mean-squared error to assess the accuracy
of our model’s predictions.

Root Mean-squared error (RMSE) measures
the square root of the average squared differences be-
tween the predicted and actual values. RMSE pe-
nalises larger errors more than mean-absolute errors
and is useful for understanding the spread of errors.
It provides a more interpretable measure of error
compared to MSE. With RMSE ≈ 100, we can inter-
pret that, on average, our model’s predictions deviate
from the actual values by approximately 100 units.
This implies that the model’s performance might be
better or worse depending on the scale and context
of the predicted variable.

In Table 4, we present the weights assigned to
each feature in the linear regression model. These
weights indicate the magnitude and direction of the
influence that each feature has on the model’s predic-
tions. Positive weights signify a positive correlation
with the target variable, meaning that an increase in
the feature’s value is associated with an increase in
the predicted outcome. Conversely, negative weights
indicate a negative correlation, implying that higher
values of the feature correspond to lower predicted
outcomes.

Feature Weight
ROUGE-1 2326.1913
NLP (Domain) 73.0034
Computer Vision (Domain) 43.4408
Dataset Size 2.6005× 10−7

Model Size −1.3961× 10−8

F1 Score −10.7843
Accuracy −109.3057
Not Specified (Domain) −116.4442
ROUGE-L −2242.8073

Table 4: Weights for the individual features.

5 Firefox Extension

As mentioned in Section 1, the transparency of car-
bon emissions of AI models is lacking and needs im-
proving. To facilitate conscious decisions by develop-
ers we created a Firefox extension that gives insights
into the environmental cost of training models with
HuggingFace Autotrain, based on the domain and the
dataset size.

Functionality

With the singular goal of estimating carbon emissions
for the training phase of an AI model, the function-
ality is relatively simple; fill in the pre-determined
details about the AI model and estimate the carbon
emissions. Currently, the user can only fill in the
domain (NLP, Computer Vision or Other) and the
dataset size in bytes.

Usage

When the user clicks the submit button, the infor-
mation is transmitted through an HTTP request to
a server, which feeds the subsequent data into the lin-
ear regression model. Based on the weights in Table
4, the model calculates the estimated CO2 equivalent
emissions in grams and returns this to the extension.

Figure 2: Firefox extension showing predicted emis-
sions for training a Computer Vision model with a
dataset size of roughly 130 MB

Upon receiving the response, the extension renders
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the prediction, as seen in Figure 2. The text displays
different colours — green, yellow, orange or red —
based on which quartile the estimated carbon emis-
sions are in. Respectively, the first quartile is green,
the second quartile is yellow, the third quality is or-
ange, and the fourth quartile is red.

Conclusion

In conclusion, the development of the Firefox exten-
sion represents a significant step towards addressing
the lack of transparency regarding carbon emissions
in AI model training. By providing developers with
a simple yet effective tool to estimate the environ-
mental impact of their training processes, we aim to
foster more informed decision-making.
The extension simplifies carbon emissions estima-

tion for AI models by integrating with a linear re-
gression model, offering insights based on domain and
dataset size. Its intuitive interface empowers develop-
ers to prioritise environmental sustainability, visually
representing emissions predictions.

6 Discussion

In this section, we explore the gap between emissions
of Autotrain and self-reported models, attributing
it to varied training methods or potentially lenient
emission calculations. We also assess the impact of
different features on carbon emissions, emphasising
the prominence of performance metrics and the ne-
cessity for a consensus on reporting carbon emission
data.

Difference Between Autotrain and Self-
reported Emissions

During the exploratory data analysis, we found that
a substantial difference exists between the carbon
emissions of models trained with Autotrain and self-
reported carbon emissions. To explain this phe-
nomenon, we propose two different answers; differ-
ent types of training or Autotrain could report too
lenient carbon emission data.
Firstly, the difference could lie within the type of

training, as there is a substantial difference in com-

putational power needed for (pre-)training compared
to fine-tuning of an already existing model. Within
the dataset there was a column containing training-
type information, however, only a handful of models
actually reported on this information, thus we could
not conclude anything from this.

Secondly, the carbon emission data that Autotrain
publishes could be too lenient compared to the origi-
nal figure. Based on the complexity of the Autotrain
functionalities, the carbon emissions are most likely
calculated by some estimation function. However,
we cannot determine what this is comprised of and
a more individual, in-depth analysis on a per-model
basis is needed.

Indicators of Carbon Emissions

Based on the weights of the linear regression model
in Table 4, it seems the most important features to
determine carbon emissions are performance metrics.
This seems logical as increasing the performance of
a model normally means increasing training time,
and thus increasing energy consumption. Notably,
dataset size barely influences the carbon emissions
and increasing the output model size actually de-
creases carbon emissions, which warrants further in-
vestigation as these metrics are one of the only met-
rics able to be gathered before starting training.

Opposite Effects of ROUGE-1 and ROUGE-L

ROUGE-1 and ROUGE-L are both performance
metrics, where ROUGE-1 measures the overlap of
unigrams between machine-generated and reference
summaries, while ROUGE-L considers the longest
common subsequence. Both these performance met-
rics are domain-specific and only warrant usage
within the NLP domain. Even though the weights
of both these parameters in absolute value are high,
they can only assess carbon emissions for a subset
of NLP tasks, primarily summarisation, as they are
tailored specifically for evaluating the quality of gen-
erated summaries against reference summaries.

Approximately 20% of all models featured
ROUGE-1 and ROUGE-L performance metrics, ren-
dering them irrelevant for the remaining 80% of es-
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timations. Consequently, we posit that these metrics
may have been overfitted on the subset of models
possessing them, serving to reduce the overall error
of the model without enhancing its generalisability.

Quality of Reported Emissions Data

The reporting of carbon emissions is already low, but
the extra information that is reported for each model
that does report carbon emissions is even worse, with
some statistics, such as dataset size, only a hand-
ful reporting it. All parties - model developers, the
HuggingFace platform and the Autotrain developers -
should be pushed to more rigorously report on model
attributes. A tool such as Autotrain is the ideal av-
enue to streamline reporting since the entire configu-
ration is done through it.

Furthermore, HuggingFace itself does not provide
consistent APIs across languages which forces re-
searchers to use the Python API for fetching model
and dataset attributes and the JavaScript API for
fetching model cards. There is not a single source
of data that can be retrieved for each model because
attributes are either written in plain text, added as
model labels or inferred from file sizes.

Thirdly, model developers that self-report emis-
sions data should do so preferably through the afore-
mentioned model labels instead of just plain text.
These labels can then be configured using consistent
units of measurement such that, for example, there is
no ambiguity on whether the emissions are reported
in grams or kilograms.

Choice of Metric for Reporting Emissions

In the race to a zero carbon world, the focus on emis-
sion values is understandable and above all explain-
able to policymakers and management. However, we
argue that relying solely on CO2 equivalent emissions
to compare the efficiency of models may oversimplify
the environmental impact analysis. This is due to the
regional and temporal fluctuations of emission cost
per energy spent, whereas direct energy consumption
in kWh provides an absolute value that is separate
from the energy source used.

While CO2 equivalent emissions offer a comprehen-
sive measure of environmental impact, incorporating
direct energy consumption metrics can provide addi-
tional insights into the efficiency of machine learning
models. By considering both CO2 equivalent emis-
sions and direct energy consumption, stakeholders
can better understand the environmental footprint
of AI models across different contexts and make in-
formed decisions regarding sustainability.

Realistic reporting necessitates the wider adoption
and user-friendly implementation of tools such as
Code Carbon [2] by developers to assess environmen-
tal impact. In an ideal scenario, both CO2-eq and en-
ergy usage in kWh would be reported, as each serves
a distinct purpose in assessing the sustainability of
AI models.

6.1 Future Work

Research in the area of analysing carbon emissions
produced by machine learning models can be majorly
improved from two perspectives; dataset quality and
fine-tuned modelling.

Improving Dataset Quality

To be able to estimate carbon emissions for mod-
els that do not report carbon emissions, we need a
higher quality dataset of AI models that have carbon
emissions and information about variables the car-
bon emissions might depend on. A significant missing
data entry is the number of parameters of a model.
The parameter amount is a big indicator of model
size and to a certain extent the produced emissions.
It is barely found - [report count here] - in the dataset
even though it is a major design decision. Model pa-
rameters could improve the precision of carbon emis-
sion prediction models such as the one presented in
this report.

Developing Models Independent of Perfor-
mance Metrics

Further research should aim to create a prediction
model that does not depend on performance met-
rics, and solely on information that is available before
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training the model. This requires better reporting
and more reliant extraction of the model attributes
from HuggingFace. A more well-trained prediction
model enables more careful consideration of model
attributes and training parameters. Such models can
also be presented as more explainable as their coeffi-
cients represent known design factors of AI models.

7 Conclusion

The work on estimating carbon emissions of Hugging-
Face AI models sheds light on the evermore pressing
issues of environmental sustainability in the field of
artificial intelligence. We analysed a dataset of car-
bon emissions of AI models on HuggingFace and un-
covered insights into the factors that influence carbon
emissions during the training phase.
The investigation revealed a statistically significant

difference between self-reported and Autotrain mod-
els, highlighting a discrepancy in reported carbon
emissions within the dataset. This disparity shows
the necessity for standardised reporting measures and
enhanced transparency within the AI community to
asses the actual environmental impact the field has.
The stark difference in carbon emissions between

self-reported and Autotrain models emphasises the
urgent need for a standardised reporting measure for
AI models. Establishing consistent reporting stan-
dards that include statistics regarding the models,
including training type, geographical location and
hardware used, will facilitate more reliable compar-
isons of environmental impact, ultimately driving the
field towards more sustainable AI practices.
The correlation observed between performance

metrics and estimated carbon emissions suggests a
delicate balance between model efficiency and accu-
racy in AI development. As developers partake in
an arms race to optimise model performance, care-
ful consideration is warranted about the environmen-
tal consequences of increased computation demands.
Balancing efficiency and accuracy will be crucial in
mitigating the environmental impact of future AI
technologies.
Future research endeavours should prioritise im-

proving dataset quality, developing models indepen-

dent of performance metrics, and advocating for con-
sistent reporting of emissions across the AI commu-
nity. By addressing these key areas, researchers can
advance our understanding of the environmental im-
pact of AI models and work towards more sustainable
and ethical practices in AI development.

8 Code Acknowledgments

All the code used in this project can
be found in our GitHub repository at
https://github.com/thijsnulle/sse-project2/ with
a concise README document that elaborates
further on steps for reproducing our results and
running the extension.
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