
GreenCode: Promoting Eco-Friendly Coding Practices
Esha Dutta

TU Delft

5915996

e.dutta@student.tudelft.nl

Smruti Kshirsagar

TU Delft

5938643

s.s.kshirsagar@student.tudelft.nl

Giovanni Loureiro

TU Delft

4926854

g.fincatodeloureiro@student.tudelft.nl

ABSTRACT
This paper introduces GreenCode, a novel approach for identify-

ing energy-efficient Python coding practices in Jupyter notebooks

through the development of a Google Chrome plugin. By iden-

tifying and proposing alternative coding practices for common

scenarios, GreenCode aims to reduce energy consumption in soft-

ware development. In its current version, GreenCode has been

built for four commonly used coding practices. This paper also

presents a comparison of the energy consumption of these four

coding practices and their alternatives. The effectiveness of Green-

Code is validated through experiments on publicly available Python

code, demonstrating significant reductions in energy usage. It is

found that GreenCode gives favourable results for three of the four

coding practices. Despite some limitations, GreenCode presents a

promising solution for promoting eco-friendly coding practices and

contributing to sustainability in the computing industry.

1 INTRODUCTION
As computational capabilities continue to advance, driven by the

increasing integration of digital technologies into various aspects

of society, there has been an exponential growth in the demand for

computational resources. This surge in demand has not only trans-

formed the landscape of computing but has also led to a significant

increase in energy consumption, particularly within data centres

and supercomputing facilities. According to a study by Katal et al.,

[1], the energy consumption of data centres alone is projected to

rise from 200 TWh in 2016 to 2967 TWh by 2030, highlighting the

substantial environmental impact of computing infrastructure. Con-

sequently, there is a growing urgency to address the environmental

implications of this energy consumption, with researchers focusing

on reducing the carbon footprint of software applications [2]. By

adopting responsible practices in software development, such as

optimizing code to minimize power consumption, it is possible to

not only promote conservation and sustainability but also lower

operational costs for businesses and organizations.

Traditionally, code optimization techniques have primarily fo-

cused on improving performance and enhancing code extensibility,

reusability, and testability. However, recent research has shown

that such methods of code refactoring can also significantly reduce

power consumption [3]. This is particularly relevant for commonly

accessed code segments, which are executed frequently within ap-

plications. In data science, for example, operations such as data

preprocessing, cleaning, and transformation often involve iterative

or batch processing of large datasets. By optimizing commonly

accessed functions to consume less energy, developers may achieve

compounded energy savings, as these functions are invoked repeat-

edly within loops or by other functions. Even minor optimizations

in such code segments have the potential to yield substantial en-

ergy savings, underscoring the importance of prioritizing energy

efficiency in software development [4]. To enable developers to

make informed decisions regarding energy-efficient software de-

sign, a solid knowledge base and guidance are essential for software

architects, data scientists, and developers alike [5].

Python has emerged as a ubiquitous programming language, find-

ing applications across diverse domains such as web development,

data science, machine learning, and scientific computing [6]. Com-

plementing Python’s versatility, Jupyter Notebooks have gained

widespread popularity for their interactive and exploratory envi-

ronment, which seamlessly integrates code, text, and visualisations.

Jupyter Notebook App is a server-client application that allows

editing and running notebook documents,i.e., computer code and

rich text elements via a web browser. The combination of Python

and Jupyter Notebooks offers developers and researchers a power-

ful platform for prototyping, experimenting, and collaborating on

projects across various disciplines. Apart from the actual applica-

tions, during the coding and debugging phase also, certain blocks

of code or invoked functions are executed a large number of times

by developers. Hence, there is a need to introduce energy efficiency

for development in Python and Jupyter environments.

In this paper, we present a novel solution aimed at addressing

energy inefficiencies in Python code through the development of

a Jupyter plugin. We created a Google Chrome plugin designed to

detect and suggest improvements for specific code segments identi-

fied as commonly inefficient. For the selection of these segments,

we assessed different scenarios and commonly used inefficient code

snippets, along with steps to improve them. The energy consump-

tion of these codes was measured before and after the improvement.

This study showed a considerable difference in energy consumption

over a large number of reruns, which further highlights the need

for our solution. Grounded in this empirical research, our plugin

targets four specific code segments and suggests methods for refac-

toring them. Thus, the solution focuses on detecting and providing

actionable recommendations for improved energy efficiency of the

code.

The remainder of this paper is structured in the following way:

The Related Work section provides a systematic review of literature

pertaining to sustainable coding. The Methodology section gives

insights into the proposed solution and its implementation. The fol-

lowing Validation section delves into the testing of the implemented

plugin. The following Discussion section states the contributions

and effectiveness of the solution. The Limitations and Future Work

section discusses the drawbacks of the presented solution along

with prospects of possible future work. Finally, the Conclusion

summarises the results and implications of the proposed solution.



2 RELATEDWORK
Code refactoring for energy efficiency has been a subject of recent

research. In this section, we briefly discuss some of the key findings

andmethodologies applied in studies related to sustainable software

development.

The authors of [7] conducted a comparative analysis of energy

consumption while using various Python functions, data initializa-

tion strategies, data access patterns, various data structures, string

formatting and data visualisation. Some of the differences were

significant; for example, for printing strings, the comma method

was found to be most energy inefficient, as compared to f-string,

format() method, and string concatenation using the + operator. The

results demonstrated the importance of energy-efficient software

development in the context of the increasing demand for energy

and the growing use of programming.

Pinto et al [3] looked into potential opportunities and limitations

of code refactoring to improve the energy efficiency of a software

system, focusing mainly on mobile applications. Based on a vast

literature study, they found that reduction of I/O operations, making

API calls lightweight, reduction of background running features

and using parallelism are some of the techniques which can help

make an application greener. Limitations or challenges associated

with implementing these changes were also discussed, addressing

the technological dependencies, corner cases in the identification of

inefficient code and accurately refactoring the code to not affect the

operation of the application. The paper did not include a working

model.

The empirical study in [8] investigated the impacts of applying

refactorings on energy usage. 197 instances of 6 commonly used

class-level refactorings such as – inline methods and introduction of

parameter options, were studied. All of the refactorings were found

to be statistically significant in terms of impact on the energy usage

of an application. They also studied whether the effects of applying

refactoring were consistent across applications and platforms by

using different JVMs for the experiment.

In [2], two different Green Software practices were applied to

two software applications, namely query optimization in MySQL

Server and usage of “sleep” instruction in the Apache web server.

This was followed by a comparison of the energy consumption at

system-level and at resource-level, before and after applying the

practice. It was found that both practices were effective in improv-

ing software energy efficiency, reducing consumption by up to 25

Most of the existing research was centred around finding ineffi-

ciencies and providing greener versions of certain coding practices.

However, an implemented solution addressing and raising aware-

ness about these practices was not found. Hence, we decided to

implement a Proof of Concept of a tool which could extract occur-

rences of code inefficiencies discussed above and encourage users

to adhere to better coding practices.

3 METHODOLOGY
This section elaborates on the identification of the four coding

practices and the experiments performed to calculate their energy

consumption. Furthermore, this section also introduces GreenCode,

a Chrome extension to notify users about alternative coding prac-

tices when they use an energy-efficient paradigm in their code.

3.1 Scenario Comparisons
Through various blog posts and articles about green coding prac-

tices[9][10], we have identified four common code scenarios that

arise during python development in which the energy consumption

can be reduced by using alternative practices. These paradigms are

also representative of scripts as they are used in many cases. For

example, for loops are widely used in string and array manipulation

and exponentiation operators are commonly used in mathematical

scripts.

These scenarios and their alternative practices are as follows:

(1) Using for Loops for List Operations can consume higher

energy than using list comprehensions. The latter offers

a shorter syntax while performing sophisticated filtering,

mapping, and conditional logic on existing lists

(2) Comparing Different Data Types can be useful for com-

paring different data types for various tasks such as sorting.

However, it also consumes more energy.

(3) Using the Exponentiation Operator (**) can be necessary

to work with negative and fractional exponents. But if a

number simply needs to be raised to an integer power, a loop

will consume much less energy.

(4) Using addition operator to join strings can consume

significantly more energy. As an alternative, Python’s inbuilt

functions can be used in many instances instead of using

manual operations, since they are tested and optimized for

best performance. In this project, we have picked the case

of joining strings together using the join() function. This

function is more energy efficient, compared to using the

addition operation (+) to join strings.

To substantiate these claims, we have created a notebook that uses

codecarbon[11], a python library to measure the energy consump-

tion of python code, to compare the energy consumption of the

four scenarios with their alternatives. In this notebook, the original

codes and their alternatives were each executed 90 million times to

see the differences in their energy consumption. It was found that

in all four cases, the alternative paradigms performed better. The

findings are in table 1. These performance differences would make

a bigger impact when employed in large-scale software projects.

3.2 GreenCode Chrome Extension
To notify users about their energy-inefficient coding practices,

we have created an extension called GreenCode compatible with

Jupyter Notebook running on Google Chrome. Jupyter Notebook

was chosen as it is a preferred editor for data science and data ana-

lytics work in Python[12]. Google Chrome was also chosen due to

its popularity. According to a 2024 survey, nearly two-thirds of the

global population use Google Chrome to browse the internet[13].

GreenCode identifies parts of Python code in the Jupyter Note-

book that may potentially be energy inefficient. It also informs the

user about an alternative that may be used to make the code more

energy-efficient. The source code can be found here: GreenCode

github

2

https://colab.research.google.com/drive/1OjbKTKf21UY4Urdn_T8muD4Vey_SfmqM?usp=sharingnotebook
https://github.com/GiovanniLoureiro/sse32_project2
https://github.com/GiovanniLoureiro/sse32_project2


Coding Practice Energy Consumption
(in Milliwatt-Hour)

Alternative Practice Energy Consumption
(in Milliwatt-Hour)

Using for loops for lists 156 List Comprehension 87

Comparing different data types 271 Comparing same data types 59

Using exponentiation operator 378 Using multiplication operator 88

Using addition operator to join

strings

327 Using inbuilt function to join

strings

262

Table 1: Energy consumptions of four selected coding practices and their alternatives

GreenCode has been created using JavaScript. JavaScript was

chosen as it is Google Chrome’s primary scripting language. Since

extensions are essentially web applications running within the

browser, using JavaScript ensures compatibility with the browser’s

runtime environment. The JavaScript code parses through the

Jupyter notebook’s HTML code and identifies the four aforemen-

tioned use cases using regular expressions. Then, it replaces the

code on the Jupyter Notebook with a suggestion. The user may

choose to update the code according to this suggestion or ignore it

altogether. In either case, the suggestion disappears if the user clicks

on it. If the user wants to refer to the suggestion again, she can

reload the webpage and the suggestion will be displayed again. For

example, writing the following lines of code in a Jupyter notebook

will prompt GreenCode to provide a suggestion:

a = 2
a = a**3
print(a)

A screenshot of this suggestion can be found in figure 1.

Figure 1: GreenCode suggestion on Jupyter notebook

4 VALIDATION
In this section, we present the results of the validation of GreenCode

which was performed on publicly available Python code.

For each of the four coding practices, five notebooks were se-

lected from The Algorithms Python Github repository to test Green-

Code. The Algorithms Github account is an open-source resource

for learning Data Structures and Algorithms and their implementa-

tions in many programming languages. Their Python repository

has 177,000 stars and contains a wide variety of commonly used

algorithms in Python. Thus, this repository was selected because

of its comprehensiveness and popularity. The selection of the note-

books was contingent on the number of occurrences of the coding

paradigm for which they were chosen, and also the context in

which the paradigm occurred. The selection was done such that

GreenCode can be tested on a higher number and a wider variety

of occurrences of these paradigms.

The true positives and false positives for each practice mentioned

in Section 3.1 have been calculated after a manual inspection of

Positive Negative

Positive TP (13) FP (5)

Negative FN (0) TN (0)

Table 2: Confusion matrix: for loop detection

the code. If an occurrence of a coding practice can be replaced

by its alternative, which is also mentioned in Section 3.1, without

disrupting the logic of the code, it has been counted as a true

positive. However, if the alternative practice is not relevant to an

occurrence, it has been counted as a false positive. True negatives

and false negatives are zero for each case since the tool does not

identify any negative case. These values have been reported in a

confusion matrix for each practice.

Finally, the precision for each practice has been reported in table

6. The precision metric was chosen over other metrics like recall

and F1 score because only true positive and false positive values

are relevant in this experiment. Precision is calculated as follows:

Precision =
True Positives

True Positives + False Positives

4.1 For Loops vs List Comprehension
The notebooks alternative_string_arrange.py, credit_card_validator.py,

anagrams.py, check_anagrams.py, damerau_levenshtein_distance.py,

and frequency_finder.py were selected from the folder strings in
the repository. This folder was selected because it contains a high

number of occurrences of for loops used for string manipulation.

GreenCode identified 18 occurrences of for loops. 13 of these for
loops were performing operations on lists which could have been

replaced by list comprehension. The other 5 occurrences could not

have been replaced with list comprehension. These results can be

found in table 2.

4.2 Comparing Different Data Types
The notebooks histogram_stretch.py from the folder histogram_
equalization, bisection_2.py from the folder numerical_analysis, in-
versions.py from the folder divide_and_conquer, and edit_distance.py
andmin_distance_up_bottom.py from the folder dynamic_programming
were selected for this case. These notebooks were selected as they

contain many occurrences of various comparison operators. Green-

Code detected 20 occurrences of comparison operators. Only 3 of

these were comparing variables of different types. These results

can be found in table 3.

3

https://github.com/TheAlgorithms/Python


Positive Negative

Positive TP (3) FP (17)

Negative FN (0) TN (0)

Table 3: Confusion matrix: Comparison of different data
types

Positive Negative

Positive TP (20) FP (1)

Negative FN (0) TN (0)

Table 4: Confusion matrix: Exponentiation operator

Positive Negative

Positive TP (12) FP (14)

Negative FN (0) TN (0)

Table 5: Confusion matrix: joining strings using addition
operator

Coding Practice Precision
Using for loops for lists 0.72

Comparing different data types 0.15

Using exponentiation operator 0.95

Using addition operator to join strings 0.60

Table 6: Precision for each coding practice

4.3 Using the Exponentiation Operator
The notebooks area.py, area_under_curve.py, basic_maths.py, bino-

mial_distribution.py, and dodecahedron.py were selected from the

folder maths in the repository as they contain many occurrences of

the exponentiation operator. GreenCode detected 21 occurrences

of this operator. All of these could have been implemented using a

multiplication operator except for one case in which the exponent

was a proper fraction. These results can be found in table 4.

4.4 Using Addition Operator to Join Strings
The notebooks camel_case_to_snake_case.py, detecting_english_

programmatically.py, title.py, z_function.py, wave.py from the folder

strings in the repository were selected for this case because they

contain many occurrences of using the addition operator to join

strings. GreenCode detected 26 such occurrences, 12 could have

been replaced by Python’s inbuilt join() function. 14 occurrences

were using the addition operator for purposes other than string

joining. These results can be found in the table 4.

5 DISCUSSION
For the first part of our study mentioned in Section 3.1, the energy

consumption of certain Python codes wasmeasured before and after

applying energy-efficient practices. The findings are visualised in

the graph shown in Figure 2. For most cases, except the string join

method, it was found that the initial code used more than double

the energy as compared to the suggested improvement. In the case

of the exponentiation operator, the difference is most significant,

where multiplication is over four times more efficient. This data

indicates that it is possible to achieve certain functionalities by

using better practices, without compromising on efficiency.

Figure 2: Comparison of Energy Consumption for Python
Codes

To make developers aware of this information, the GreenCode

plugin was developed for the Chrome web browser which parsed

Jupyter code to identify the above scenarios and suggest improve-

ments. The plugin ran successfully after it was added to Google

Chrome. After testing it on existing Jupyter notebooks, suggestions

showed up in the appropriate code blocks as designed.

Utilization of Regular Expressions (Regex) constituted a funda-

mental aspect of GreenCode’s developmental framework, facili-

tating the identification of segments within the code potentially

susceptible to energy inefficiencies. Emphasis was placed on the

detection of all occurrences of the scenarios. This led to a trade-

off with accuracy, by increasing the scope for detection of False

Positives while minimising False Negatives. Consistent with the

assumption, the results show that there were a considerable number

of False Positives detected, but no False Negatives were detected.

Hence, there were no cases of inefficient code that were not de-

tected by GreenCode. Since the improvements are only suggested

and disappear once the developer starts editing the code, there is

no direct impact of choosing this approach.

The exponentiation operator scenario has the highest precision

of 0.92 since Regex matching was the easiest for that case. There

was only one false negative which occurred since the exponent

was a proper fraction. In such cases, the multiplication operator

cannot replace the exponentiation operator. On the other hand, the

comparison of different data types had an extremely low precision

of 0.15 due to a large number of False Positives. This is because it is

not possible to find the data type of a variable without running the

Python code. Hence, based on simple parsing of the code, it is not

possible to identify the data type of a given variable. GreenCode

was configured to show the prompt in case of all data comparison

operations. The user can check to see if the data types are indeed

4



inconsistent and may choose to ignore the prompt shown. Simi-

larly, in the case of for loops, detection was done by finding all for
loops in the code, leading to certain instances being detected where

it was not possible to replace the code with list comprehension.

The precision was 0.72 for this case. Similarly, for the string joins,

GreenCode scanned for the + operator in the code, leading to a

high number of False Positives while also detecting all the True

Positives. The precision was 0.60 for this case.

Overall, GreenCode performed well with respect to the detec-

tion of energy-inefficient code within a Jupyter Notebook but was

not able to distinguish the cases where code refactoring was not

possible, hence giving recommendations even when they were not

accurate. We discuss these limitations and the scope of improve-

ment in the next section.

6 LIMITATIONS AND FUTUREWORK
The current version of GreenCode is only a proof of concept. There

can bemany improvements to the first version of this extension. The

regular expressions used to identify the code on Jupyter Notebook

are quite primitive.

The tool currently shows the user a suggestion for every for
loop in the code, irrespective of whether the loop can logically be

replaced by list comprehension or not. In future versions, the code

can also be parsed to checklist operations occurring inside the for
loop. Then, the tool will not unnecessarily provide suggestions to

the user in cases where list comprehension is not a valid option to

use.

Moreover, since it is impossible to check the data type of a vari-

able in Python before runtime, GreenCode cannot detect whether

the comparison is occurring between variables of the same or dif-

ferent types. Currently, it asks the user to check if a comparison

operator is being used on variables of different data types. If so, it

also advises the user to consider implementing her code differently.

Furthermore, GreenCode has only been implemented consider-

ing one example of Python’s inbuilt functions, join(). Suggestions

for using many other functions can also be integrated into the tool.

For example, if a user is manually writing code which can be done

more efficiently by functions like abs(), round(), len() etc., she can

be advised to use the latter.

GreenCode can also be made more user-experience friendly.

Currently, the suggestions disappear as soon as the user clicks on

them. The user may want to refer to the suggestion again without

refreshing the browser. In future versions, the suggestion can be

given in a collapsible manner which would make it easier to access.

Currently, GreenCode is only limited to Jupyter notebooks run-

ning on Google Chrome. In future iterations, it can be extended to

work for other browsers and development tools like IDEs etc.

Lastly, the tool is currently built for only four identified cases of

energy-inefficient practices. More such cases can be explored and

it can be extended to notify users about a wider variety of green

coding practices.

7 CONCLUSION
In this paper, we have made two novel contributions. Firstly, we

have introduced a Chrome plugin to identify energy-inefficient code

and suggest actionable alternatives in Python code on Jupyter note-

books. Secondly, we have identified four common coding scenarios

from online articles where energy consumption can be reduced

and proposed alternative practices for each scenario. By conduct-

ing experiments and measuring energy consumption before and

after applying these practices, we have demonstrated reductions

in energy usage. We have also validated GreenCode’s effectiveness

through experiments on publicly available Python code. It showed

promising results for two use cases. It was able to identify and sug-

gest alternatives for energy-inefficient coding practices for using

exponentiation operator and using for loops for lists with precisions

of 0.95 and 0.72 respectively. The precision for the case of using

the addition operator to join strings was 0.60, indicating the need

for improvements. However, it did not show favourable results for

the case of comparing different data types. The precision was only

0.15.

Despite some limitations, such as the tool’s current focus on a lim-

ited set of coding scenarios and its compatibility with only Jupyter

notebooks on Google Chrome, GreenCode presents a promising

solution for promoting eco-friendly coding practices in Python de-

velopment. Future work includes expanding the tool’s capabilities,

improving user experience, and extending its compatibility with

other development environments and browsers. Through these

efforts, GreenCode aims to contribute to the reduction of energy

consumption in software development and promote sustainability

in the computing industry.

REFERENCES
[1] Avita Katal, Susheela Dahiya, and Tanupriya Choudhury. “Energy efficiency in

cloud computing data centers: a survey on software technologies”. In: Cluster
Computing 26.3 (Aug. 2022), pp. 1845–1875. issn: 1573-7543. doi: 10 .1007/

s10586-022-03713-0. url: http://dx.doi.org/10.1007/s10586-022-03713-0.

[2] Giuseppe Procaccianti, Héctor Fernández, and Patricia Lago. “Empirical eval-

uation of two best practices for energy-efficient software development”. In:

Journal of Systems and Software 117 (July 2016), pp. 185–198. issn: 0164-1212.

doi: 10.1016/j.jss.2016.02.035. url: http://dx.doi.org/10.1016/j.jss.2016.02.035.

[3] Gustavo Pinto, Francisco Soares-Neto, and Fernando Castor. “Refactoring for

Energy Efficiency: A Reflection on the State of the Art”. In: 2015 IEEE/ACM
4th International Workshop on Green and Sustainable Software. IEEE, May 2015.

doi: 10.1109/greens.2015.12. url: http://dx.doi.org/10.1109/GREENS.2015.12.

[4] R Manimegalai et al. “Energy Efficient Coding Practices for Sustainable Soft-

ware Development”. In: Proceedings of the First International Conference on
Science, Engineering and Technology Practices for Sustainable Development,
ICSETPSD 2023, 17th-18th November 2023, Coimbatore, Tamilnadu, India. IC-
SETPSD. EAI, 2024. doi: 10.4108/eai.17-11-2023.2342635. url: http://dx.doi.

org/10.4108/eai.17-11-2023.2342635.

[5] Candy Pang et al. “What Do Programmers Know about Software Energy Con-

sumption?” In: IEEE Software 33.3 (2016), pp. 83–89. doi: 10.1109/MS.2015.83.

[6] K. R. Srinath. “Python–the fastest growing programming language”. In: In-
ternational Research Journal of Engineering and Technology 4.12 (Dec. 2017).

Available at: https : / /www.irjet .net/archives/V4/ i12/ IRJET- V4I1266.pdf,

pp. 354–357. issn: 2395-0072.

[7] Nurzihan Fatema Reya et al. “GreenPy: Evaluating Application-Level Energy

Efficiency in Python for Green Computing”. In:Annals of Emerging Technologies
in Computing 7.3 (July 2023), pp. 92–110. issn: 2516-0281. doi: 10.33166/aetic.

2023.03.005. url: http://dx.doi.org/10.33166/AETiC.2023.03.005.

[8] Cagri Sahin, Lori Pollock, and James Clause. “How do code refactorings affect

energy usage?” In: Proceedings of the 8th ACM/IEEE International Symposium
on Empirical Software Engineering and Measurement. 2014, pp. 1–10.

[9] Pronod Bharatiya. How to use python dict() in energy efficient way - some useful
tips. Jan. 2024. url: https://www.linkedin.com/pulse/how-use-python-dict-

energy-efficient-way-some-useful-bharatiya/.

[10] Metakratos Studio. Writing eco-friendly code in Python: Cooling the planet. May

2023. url: https://medium.com/metakratos-studio/writing-eco-friendly-code-

in-python-cooling-the-planet-3cb8f7a464e3.

[11] codecarbon. accessed on 14 March 2024. url: https://codecarbon.io/.

5

https://doi.org/10.1007/s10586-022-03713-0
https://doi.org/10.1007/s10586-022-03713-0
http://dx.doi.org/10.1007/s10586-022-03713-0
https://doi.org/10.1016/j.jss.2016.02.035
http://dx.doi.org/10.1016/j.jss.2016.02.035
https://doi.org/10.1109/greens.2015.12
http://dx.doi.org/10.1109/GREENS.2015.12
https://doi.org/10.4108/eai.17-11-2023.2342635
http://dx.doi.org/10.4108/eai.17-11-2023.2342635
http://dx.doi.org/10.4108/eai.17-11-2023.2342635
https://doi.org/10.1109/MS.2015.83
https://www.irjet.net/archives/V4/i12/IRJET-V4I1266.pdf
https://doi.org/10.33166/aetic.2023.03.005
https://doi.org/10.33166/aetic.2023.03.005
http://dx.doi.org/10.33166/AETiC.2023.03.005
https://www.linkedin.com/pulse/how-use-python-dict-energy-efficient-way-some-useful-bharatiya/
https://www.linkedin.com/pulse/how-use-python-dict-energy-efficient-way-some-useful-bharatiya/
https://medium.com/metakratos-studio/writing-eco-friendly-code-in-python-cooling-the-planet-3cb8f7a464e3
https://medium.com/metakratos-studio/writing-eco-friendly-code-in-python-cooling-the-planet-3cb8f7a464e3
https://codecarbon.io/


[12] JetBrains. The State of Developer Ecosystem 2022 - Data Science. https://www.

jetbrains.com/lp/devecosystem-2022/data-science/. Accessed: March 28, 2024.

2022.

[13] Oberlo. Browser Market Share Statistics. https://www.oberlo.com/statistics/

browser-market-share/. Accessed: March 28, 2024. 2024.

6

https://www.jetbrains.com/lp/devecosystem-2022/data-science/
https://www.jetbrains.com/lp/devecosystem-2022/data-science/
https://www.oberlo.com/statistics/browser-market-share/
https://www.oberlo.com/statistics/browser-market-share/

	Abstract
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Scenario Comparisons
	3.2 GreenCode Chrome Extension

	4 Validation
	4.1 For Loops vs List Comprehension
	4.2 Comparing Different Data Types
	4.3 Using the Exponentiation Operator
	4.4 Using Addition Operator to Join Strings

	5 Discussion
	6 Limitations and Future Work
	7 Conclusion

