Energy Consumption for applications in Jupyter Notebooks

Mitali P, David V, Pia A
Delft University of Technology

ABSTRACT

In an era where sustainability and climate change are at the fore-
front of the global agenda, the exponential growth of the IT sector
presents challenges. As the use of digital solutions grows expo-
nentially, so does the carbon footprint associated with information
and communication technologies (ICT). It is our responsibility to
practice sustainable ways of developing new digital solutions and
helping those around us do so too. This project aims to address the
issue of sustainability within software engineering, emphasizing
the critical role of energy consumption awareness. Given the wide-
spread use of Jupyter Notebooks across various fields, we introduce
an open-source utility - Jupyter Energi that uses EnergiBridge un-
der the hood to get energy metrics for Python programs in Jupyter
Notebooks.

1 INTRODUCTION

The second principle of Sustainable Software Engineering [8], em-
phasizes the importance of building energy-efficient applications, .
The first step in this process involves measuring the energy con-
sumed by the application. Once that is measured or estimated, users
can begin to analyze how the application can be made more energy
efficient. Additionally, measuring the energy consumed enables
the users to assess whether their changes are effectively reducing
energy consumption. Moreover, the third pillar of the Green Soft-
ware Foundation strategy [5], aims to develop tools that facilitate
sustainability actions, so users can assess and improve the effects
of their software. This inspired us to build a utility that makes it
easy for users to measure the energy impact of their programs.
Jupyter Notebooks have seen a sharp rise in popularity due

to their Python-based environment that operates within a web
browser and utilizes a client-server architecture. This architecture
enables users to execute code on powerful machines while inter-
acting with the interface from lightweight endpoints, like laptops.
Free Jupyter Notebook services like Google Colab make compute-
intensive research fields more accessible to a general audience.
Python’s simplicity, versatility, and extensive library ecosystem
combined with Notebooks like Jupyter or Kaggle, offer features
such as code execution, visualization, markdown text, and inter-
active widgets, making them popular platforms for conducting
exploratory data analysis, prototyping machine learning models,
and sharing research findings. This makes them a preferred choice
in fields like data science and machine learning, where high compu-
tational power demands are common. For example, some of these
popular GitHub repositories use Jupyter Notebooks:

e Probabilistic-Programming-and-Bayesian-Methods with 26k

stars.
o generative-ai-for-beginners with 31k stars.
e Python-DataScience-HandBook with 41k stars.

While using these services, it is often easy to overlook the fact
that the actual computing requires a significant amount of resources

in data centers. Hence, we are focusing on building a tool for Python
programs in Jupyter Notebooks with the objective to provide users
with insights into their code’s energy consumption, to promote
more sustainable computing practices. This has some advantages
like :

o Developers become aware of the energy consumption of their
code. This awareness can lead to more conscious decisions
regarding algorithm design, resource utilization, and code
optimization, ultimately reducing energy usage.

e Increasing the accessibility of tools. Enabling programmers
to incorporate energy efficiency into the development pro-
cess and promoting sustainable software practices.

e Giving researchers the tools necessary to easily measure
the power consumption of code, to investigate sustainable
software engineering practices.

To implement our open-source utility: Jupyter_Energi, we choose
to use and extend the usability of an existing open-source tool for
gathering energy metrics - EnergiBridge [3]. We chose EnergiB-
ridge primarily because of its familiarity and its support for MacOS
and Windows.

2 BACKGROUND

In this section, we provide details for the two crucial parts of our
architecture.

Jupyter Notebooks have two components: an interactive comput-
ing interface and a back-end kernel. The interface allows the users
to write code in different blocks called "cells" which can be exe-
cuted individually. The kernels are separate computational engines
responsible for executing the code contained within the notebook.
When a code cell is executed, the code is sent to the kernel associ-
ated with the notebook, which executes the code and returns the
results. Kernels support multiple programming languages, includ-
ing Python, R, Julia, and others. Each notebook is associated with a
single kernel, but multiple notebooks can share the same kernel.

EnergiBridge [3], is an open-source energy measurement utility,
that offers compatibility across various operating systems and hard-
ware configurations. This tool collects data on resource usage and
power consumption from the computer, providing metrics for CPUs,
GPUs, and memory in CSV files. The approach to collect metrics
varies depending on the hardware and operating system in use. For
Intel-based systems, EnergiBridge leverages the Running Average
Power Limit (RAPL), a low-level interface used in most Intel pro-
cessors. RAPL enables precise energy consumption measurement
with a high sampling rate, particularly tailored for CPU monitoring.
GPU metrics, on the other hand, are obtained through the NVIDIA
Management Library (NVML), a software development kit (SDK)
for GPU management. For MacOS devices, system management
control (SMC) is utilized to access energy metrics from both CPU
and GPU components. Our project uses the metrics related to sys-
tem power consumption and time. To use EnergiBridge, clone the
utility’s open-source repository from EnergiBridge [3], and install

https://github.com/CamDavidsonPilon/Probabilistic-Programming-and-Bayesian-Methods-for-Hackers
https://github.com/microsoft/generative-ai-for-beginners
https://github.com/jakevdp/PythonDataScienceHandbook
https://github.com/tdurieux/EnergiBridge
https://github.com/tdurieux/EnergiBridge/

any required dependencies corresponding to your system’s oper-
ating system. Users can run EnergiBridge’s executable file with
tailored command-line arguments, enabling them to adjust parame-
ters such as measurement intervals, execution duration limits, and
the generation of GPU data or energy consumption summaries.
Figure 1 and 2 show examples of how to use EnergiBridge and the
output generated, respectively. Note that columns (CPU_frequency
and CPU_usage) for seven out of eight CPUs are hidden in Figure
2 for readability.

(base) piaasbjornsen@Pias-MacBook-Air EnergiBridge % sudo target/release/energibridge o output.csv --summary echo "Measuring energ

y consumption for this print!

Measuring energy consumption for this print
(base) piaasbjornsen@Pias-MacBook-Air EnergiBridge % ll

Figure 1: Example of CLI execution of EnergiBridge

output

Delta Time CPU_FREQUENCY_1 CPU_USAGE_ 1 SYSTEM_POWER (Watts) TOTAL MEMORY TOTAL SWAP USED_MEMORY USED_SWAP
0| 1711633279366 3204

4| 1711633279366 3204

0 8.36043643951416 8589934502 1073741824 6398967808 204734464

0 8.36043643951416 8589934502 1073741824 6399148032 204734464

Figure 2: Example output CSV for Figure 1

3 RELATED WORK

There are numerous tools to measure the energy consumption of
programs, here we outline a few of the similar extensions we found
for Jupyter Notebooks.

Jupyter-resource-usage

One of the popular ones is -jupyter-resource-usage [7], which uses
‘psutil’ to retrieve data from the kernel infrastructure. This exten-
sion displays an indication of how much resources the current
notebook and its kernel are using in the form of CPU and memory.
However, GPUs which play a significant role in training machine
learning models, are not supported. Also, this extension does not
explicitly measure or display the energy consumed in Joules or
Watts.

Jupyter-energy

Another open-source tool is -Jupyter-energy [4], which measures
and displays the energy consumed by the notebook’s server. While
our work shares similarities with this tool, jupyter-energy lacks the
capability for users to isolate specific code segments from the cells
in the notebook for energy consumption analysis. Moreover, it also
does not provide the user with data plot functionality for further
analysis.

With our utility, we seek to support as many operating systems
and different processors as possible whilst still giving the user room
for customization and flexibility.

4 BUILDING THE UTILITY

Now that we know what Jupyter Notebook and EnergiBridge are,
we will see how these two interact. Here’s an overview of the
architecture [Fig 3].

Jupyter_Energi is a Jupyter extension that allows you to seam-
lessly integrate the EnergiBridge tool into your Jupyter notebooks.

Jupyter Notebook Jupyter Notebook

4 3

y A
EnergiBridge CLI

!

Measurement utility- EnergiBridge

A A

A 4 wE
I RAPL I NVML

Figure 3: Architecture

It provides a module that can be imported to measure the energy
consumption of a specific Python code block or cell within a Jupyter
Notebook. This extension in turn runs an external executable - En-
ergiBridge as a sub-process via the command line which returns
the energy consumption data as a CSV file. There are many energy
profilers out there that measure the energy consumption from your
computer, as summarised by this blogpost,

o Intel’s Power Gadget, has an easy to use GUI and data logging
to CSV but is limited to intel CPUs on MAC and Windows.

o Intel PowerLog has CLI but is also limited to Intel CPUs on
MAC and Windows.

e Powerstat, also has a CLI but is limited to environments with
compatible Intel CPUs.

e Nvidia-smi is an easy to use CLI tool for obtaining power-
related information from Nvidia GPUs on Linux, but again,
it is limited to Nvidia GPU devices on Linux.

We opted for EnergiBridge due to its capability to log data to CSV
and its cross-platform support for Linux, MacOS, and Windows.

os Intel CPU AMDCPU MI1CPU IntelGPU NvidiaGPU AMDGPU M1 GPU

Linux =
Windows

Mac

Figure 4: Platform support offered by EnergiBridge

This multiplatform support offered by EnergiBridge presents a
significant advantage, serving as a comprehensive solution for most
users. This eliminates the need to install separate tools tailored to
specific operating systems and processors, especially beneficial for
shared notebooks like Jupyter, which may run on various end-user
systems. Given the limitations of the systems at our disposal, we
were able to integrate commands for the Command Line Interface
(CLI) into our extension for Windows and MacOS CPUs. However,
given the capability of EnergiBridge, users can easily adopt and
customize our extension code to retrieve energy usage data by
adding commands for Linux or modifying any existing command
to get GPU usage data.

https://github.com/jupyter-server/jupyter-resource-usage
https://github.com/jupyter-server/jupyter-resource-usage/issues/12
https://github.com/MarcelGarus/jupyter-energy
https://luiscruz.github.io/2021/07/20/measuring-energy.html

5 THE UTILITY: JUPYTER_ENERGI

Now let us dive into how Jupyter_energi works along with the
requirements to use it. Our utility allows users to measure energy
consumption from the cells in Jupyter Notebook in two ways, shown
in Figure 5:

e By using the (#EnergiBridgeStart and #EnergiBridgeStop)
markers with the code contained between the tags.

o By defining the code as a string and directly passing it to the
run function.

L jupyter_energi

jupyter_energi.run()

code =
for i in range(1868008):

pass

jupyter_energi.run(program=code)

Figure 5: Example snippet of Jupyter_energi

Specifying the code in the above-mentioned fashion allows us to
parse the Python program within the notebook using ‘nbformat’, a
Python library that provides a way to work with Jupyter Notebook
file formats programmatically. We therefore extract code segments,
the users are targeting to evaluate energy consumption. As of now,
there are no better-known ways of extracting specific cell code from
these notebooks, necessitating the parsing of the entire notebook.

The jupyter_energi.run(program, no_runs) function is called to
run experiments. The program parameter can be used to send a
Python program as a string to Jupyter Energi, if left empty Jupyter
Energi will look for the delimiting comments in the notebook.
no_runs specifies the amount of runs the experiment will be per-
formed, it is by default 1. Specifying multiple runs is an easy way
to collect more data, and average out any inconsistencies.

As the energy data is stored in a Pandas data frame, it allows
the user to analyze and visualize it extensively according to their
preferences. To plot the energy consumption pattern over time we
provide a function to obtain a power(Watts) vs time(s) line plot.
Moreover, Jupyter Energi offers a violin plot generation function,
meaning multiple runs can easily be analysed for statistical incon-
sistencies. The violin plot generation function also comes with the

standard deviation parameter, std_dev, that specifies removed out-
liers that are more than std_dev standard deviations away from the
mean.

Since we were working with MacOS and Windows machines,
our tool provides support for both, but depending on the hardware
you might require different dependencies for Energibridge setup.
Measuring the energy cost between code changes will allow the
users to observe whether their changes are improving the energy
cost over time. The plots are especially useful in this scenario.

6 VALIDATION

Validation on simple code

To properly validate the functionality of the code, a small program
was written that calls sleep every second for three seconds, Figure
6.

jupyter_energi

i
sleep(1)

data = jupyter_energi.run()
cumu

time_and_po _energi time d_po

e_and_pow

jupyter_energi.n series_plot

Figure 6: Simple validation code

The snippet demonstrates the ease of use of Jupyter Energi. We
used the #EnergiBridgeStart and #EnergiBridgeStop delimiters to let
Jupyter Energi know what code to run. After running we call the ex-

tract_time_and_power function followed by the make_time_series_plot

with cumulative set to False.

Power vs Time, cumulative=False

—— Runl
14 A

12 4

10 A

Power (W)

T
0.5 1.0 15 2.0 2.5 3.0
Time (s)

Figure 7: Time series plot for simple validation code

As can be seen in the resulting graph, Figure 7, the sleep com-
mands are noticeable, leading to clear peaks when the program

comes out of sleep. To properly validate the same program was
rerun with the no_runs parameter set to 10.

Power vs Time, cumulative=False

Power (W)

0.5 1.0 1.5 2.0 2.5 3.0
Time (s)

Figure 8: Time series plot for simple validation code, 10 runs
As seen in Figure 8 the runs appear to show the same pattern,
albeit with one significant outlier. This is to be expected as running
EnergiBridge out of Jupyter Notebook leads to an environment
with more background processes, and thus less consistent results.
To properly inspect this outlier we rerun the time series function
with cumulative set to True and are left with Figure 9.

Power vs Time, cumulative=True

Power (W)

T
0.5 1.0 15 2.0 2.5 3.0
Time (s)

Figure 9: Time series plot for simple validation code, cumulative set to
True

In this visualization, we can clearly see the outlier and are even
able to see at what point in time it started diverging.

For further analysis, the violin plot found in Jupyter Energi can
also be used. The violin plot calculates the total energy used per
experiment and uses this to compute the plot. Therefore the signifi-
cance of the violin plot grows with the amount of runs executed.

80 A

78

76

74 A

72 A

70 A

Energy Consumption (J}

68

66

1

Figure 10: Violin plot for simple code, no_runs = 30

To this end, a new dataset was collected where the no_runs pa-
rameter was set to 30. The time and power were then extracted
with Jupyter Energi and passed to the make_violin_plot function.
In Figure 10 we see no considerable outliers, and an average total
energy consumption of around 70 Joule, which can also be seen in
Figure 9.

Validation on complex code

To test Jupyter Energi in an environment closer to one where it
may be used , we decided to test it on a complex notebook with
high computing costs. For this reason, we chose one of the tutorials
from QuTip to test Jupyter Energi. QuTip is an open-source compu-
tational physics software library for simulating quantum systems,
particularly open quantum systems.

Power vs Time, cumulative=False

20 4

18 4

16 A

Power (W)

14

12 4

10 T T T T T
Time (s)

Figure 11: Time series plot for complex validation code, 5 runs

The tutorial in question is "HEOM 4: Dynamical decoupling of
a non-Markovian environment", [6]. After running Jupyter Energi

on the extracted code with no_runs set to 5, we extract Figure 11
with the time series function.

As can be seen, the figure looks very random and doesn’t seem to
give a lot of information. Nevertheless, plotting with cumulative set
to True gives us a clearer idea of the validity of Jupyter Energi. We
observe in Figure 12 that all runs follow the same line. Even though
there appears to be significant variation in the individual time plots,
the runs show almost the same behaviour when accumulating the
power.

Power vs Time, cumulative=True

350

300

250

)

200

Power (W

150 ~

100 4

50 4

0 2 4 6 8 10
Time (s)

Figure 12: Time series cumulative plot for complex validation code, 5
runs

Violin plots were also created for the complex code, once again
with no_runs set to 30, we observe that there are 2 considerable
outliers present in Figure 13

575 1 ‘[61‘
550 1 lof
| |
= ||
= 525
k=]
g
500
2 o
8 o]
> 475
2
a
=
% 450 4
425 1
| /
400 - .
1

Figure 13: Violin plot for complex code, no_runs set to 30

Researchers may want to inspect their data without the outliers,
and for this purpose, Jupyter Energi offers a std_dev parameter.
This parameter specifies the outliers that should be removed, which
are the ones differing more than n standard deviations. Re-running

560
550 |
540 A

530 A

520

Energy Consumption ()

510 A

500

430

1

Figure 14: Violin plot for complex code, std_dev param set to 1

the function with std_deviation set to 1 produces Figure 14 as a
result. Thus, after running Jupyter Energi on both simple code and
complex code, we can conclude that Jupyter Energi is not only
validated but also extremely useful. Offering users a simple way to
measure energy consumption directly out of Jupyter Notebook and
also plotting the results.

7 LIMITATIONS AND FUTURE WORK

While Jupyter Energi presents a valuable tool for measuring en-
ergy consumption in Jupyter Notebooks, it also has limitations
mentioned below:

Dependency on EnergiBridge: Jupyter Energi heavily relies
on EnergiBridge for energy consumption measurements. As a re-
sult, the accuracy and reliability of the measurements are directly
impacted by the performance of EnergiBridge. Any limitations or
inaccuracies in EnergiBridge’s measurements will affect Jupyter
Energi effectiveness.

Influence of background activities : Other activities running
on the system affect the accuracy of energy consumption measure-
ments. These processes can potentially consume CPU resources
and memory, leading to variations in power usage over time. Users
should be aware that Jupyter Energi does not exclusively measure
the energy usage of the notebook’s program. It incorporates all
background processes into its measurements also due to its uti-
lization of EnergiBridge. In environments with heavy background
activity, this may result in less precise measurements for the note-
book, potentially affecting the energy consumption analysis.

Note that our evaluation was conducted in a scenario where
all the background processes were not removed. It was rather a
realistic portrayal of many tasks running simultaneously. As such,
no strategies to minimize the impact of various biases during the
collection of energy data were considered. However, if users want
to minimize the bias factors affecting the energy measurements
of their Jupyter Notebook program, we recommend running our
tool while minimizing other computing tasks on the system. Some
strategies can include closing all unnecessary applications and
services in the background, turning off notifications, and connecting
to only required hardware. This can help minimize bias factors in

energy measurement and can lead to closer to accurate and reliable
results for power consumption. For more details, we refer to Green
Software Engineering Done Right: a Scientific Guide to Set Up Energy
Efficiency Experiments [2].

There are also a lot of areas this extended utility can be improved:

Enhanced functionality: Future versions of Jupyter Energi
could provide users with additional details on how energy con-
sumption is measured. Offering more detailed insights into the
measurement process can help users better understand the util-
ity’s capabilities and limitations. Moreover, expanding the utility to
incorporate more functionality for other aspects of EnergiBridge,
such as retrieving data from GPUs or Linux support, could be a
natural next step for future work. Offering more functions for vi-
sualization could also provide users with enhanced insights into
their code’s energy consumption patterns. For instance usage of
scatter plots can show correlations between energy consumption
and variables like CPU or memory usage.

Simplify installation and setup: Streamlining the installation
process can enhance user experience and adoption of Jupyter Energi.
Extending it into a standalone package for publication on Python
package managers like pip can simplify installation for users. A
seamless installation experience can encourage more developers to
integrate energy consumption analysis into their workflow.

User studies: An under-explored aspect is the actual impact
of Jupyter Energi with users. Conducting user studies can provide
valuable feedback on the utility’s effectiveness and usability. By
seeking feedback from users, we can gain insights into how Jupyter
Energi influences energy-conscious decision-making in software
development. User studies can inform iterative improvements and
feature enhancements based on real-world usage scenarios.

We encourage contributions to the project and invite you to take
a look at the repository on GitHub [1]and provide any feedback or
suggestions for improvement.

8 REFLECTIONS

With the development of Jupyter Energi, we hope to empower users
with a tool that highlights the energy impact of their software on
the environment. In the development and validation of our utility,
several significant insights emerged, which bear discussion both
in terms of technical implementation and broader implications for
the software development community.

Unlike measuring CPU or RAM usage, measuring energy con-
sumption lacks established standards. It requires consulting differ-
ent libraries and services depending on the hardware being used.
Measuring energy consumption for modern systems is far from
easy and predictable. Operating systems with power-saving strate-
gies can complicate obtaining reliable results. This unpredictability
also complicates attributing energy consumption to individual pro-
cesses. While it’s possible to track the CPU cycles or RAM usage
of a process, energy usage is influenced by various factors. For in-
stance, the activation of a fan, which consumes energy, often results
from the interaction of multiple processes running concurrently
rather than the action of a single process. Having said that, there
remains significant merit in enhancing current tools that estimate
energy usage on systems. Introducing a billing model tied to the

energy consumption of the software could more accurately repre-
sent associated costs, thereby incentivizing users to monitor the
energy footprint of their code. This not only promotes environmen-
tal consciousness but also fosters a culture of cost-awareness within
the development community. Furthermore, open-source initiatives
could play a pivotal role in users being able to access such tools
and use them with ease with the help of community support and
documentation. We look forward to a future where there is wider
adoption and active participation in building a sustainable software
ecosystem.

REFERENCES

[1] Pia Asbjernsen, Mitali Patil, and David Vos. 2024. EnergiBridgeWrapper. (2024).
https://github.com/mitalipatil99/Jupyter_Energi

[2] Luis Cruz. 2021. Green Software Engineering Done Right: a Scientific Guide to
Set Up Energy Efficiency Experiments. (2021). https://luiscruz.github.io/2021/10/
10/scientific-guide.html

[3] Thomas Durieux. 2022. EnergiBridge. https://github.com/tdurieux/EnergiBridge.
(2022).

[4] Marcel Garus. 2022. jupyter-resource-usage. (2022). https://github.com/
MarcelGarus/jupyter-energy

[5] Green Software Foundation. 2022. Our theory of change - defining the strategy

for the GSF. (2022). https://greensoftware.foundation/articles/theory-of-change

Jupyter. 2022. HEOM 4: Dynamical decoupling of a non-Markovian environment.

(2022). https://nbviewer.org/urls/qutip.org/qutip-tutorials/tutorials-v4/heom/

heom-4-dynamical-decoupling.ipynb

[7] Jupyter-server. 2024. jupyter-resource-usage. (2024). https://github.com/
jupyter-server/jupyter-resource-usage

[8] Microsoft. 2024. Sustainable Software Engineering Overview.
(March 2024). https://learn.microsoft.com/en-us/training/modules/
sustainable- software-engineering-overview/

G

https://github.com/mitalipatil99/EnergiBridgeWrapper
https://github.com/mitalipatil99/Jupyter_Energi
https://luiscruz.github.io/2021/10/10/scientific-guide.html
https://luiscruz.github.io/2021/10/10/scientific-guide.html
https://github.com/tdurieux/EnergiBridge
https://github.com/MarcelGarus/jupyter-energy
https://github.com/MarcelGarus/jupyter-energy
https://greensoftware.foundation/articles/theory-of-change
https://nbviewer.org/urls/qutip.org/qutip-tutorials/tutorials-v4/heom/heom-4-dynamical-decoupling.ipynb
https://nbviewer.org/urls/qutip.org/qutip-tutorials/tutorials-v4/heom/heom-4-dynamical-decoupling.ipynb
https://github.com/jupyter-server/jupyter-resource-usage
https://github.com/jupyter-server/jupyter-resource-usage
https://learn.microsoft.com/en-us/training/modules/sustainable-software-engineering-overview/
https://learn.microsoft.com/en-us/training/modules/sustainable-software-engineering-overview/

	Abstract
	1 Introduction
	2 Background
	3 Related Work
	4 Building the Utility
	5 The Utility: Jupyter_energi
	6 Validation
	7 Limitations and Future Work
	8 Reflections
	References

