
ApproxSciMate: A Python library for approximating SciPy

functions

Eleni Papadopoulou, Lucian Negru, Yang Li

March 28, 2024

1 Problem

Statistical computations often require complex mathematical operations that can be computa-
tionally expensive, especially when large datasets are used. Typical statistical libraries like SciPy
contain several functions that operate in high precision, sometimes at the expense of unnecessary
resource consumption. High-precision computations require more memory and computational re-
sources, potentially leading to scalability issues, especially in memory-constrained environments.
Another problem with high-precision computations is that they can result in longer execution times,
reducing the responsiveness and efficiency of software applications, especially in time-sensitive or
real-time systems. Regarding sustainability, high-precision computations can significantly impact
energy consumption, even when high precision is not needed.

Many real-world use cases can benefit from the paradigm of approximate computing. Machine
Learning and AI training can integrate approximate computing when adapting existing models,
designed to run locally on performant systems, to lower-powered devices such as the Rabbit R11 or
a smartphone. Approximations are also an integral part of signal processing, where the incoming
data streams implement compression, can suffer from transmission-related losses regardless and
where processing speed is prioritised over accuracy, such as in autonomous driving sensors. Video
games – the largest entertainment industry in the world – benefit immensely from computational
approximations in their rendering pipelines, where frame generation rate is often more important
than graphics quality.

All of the aforementioned fields are some of the largest in the tech industry, having a large
impact on environmental and economic sustainability. In this report, we want to focus on the
environmental aspect of approximate computing and explore how it can be used to reduce our
negative impact. We explore one of the most popular Python libraries, SciPy2, and apply the
paradigm of approximate computing in a new library called ApproxSciMate3.

2 Why we choose SciPy functions

SciPy, a fundamental library for scientific computing in Python, encompasses a wide range of
functions that are crucial for mathematics, science, and engineering. These functions cover areas
such as linear algebra, optimization, integration, interpolation, eigenvalue problems, algebraic
equations, differential equations, and statistics. The importance of these functions lies in their
ability to provide accurate methods for numerical computation, which is essential for modelling,
simulating, and solving complex problems across various domains of science and engineering. SciPy
contains many high-precision functions that may consume unnecessary resources when performing
high-precision computations.

In particular, SciPy functions are widely used in areas such as machine learning. Machine
learning algorithms usually require a large number of statistical computations, such as proba-
bility distribution fitting, feature engineering, etc. These statistical functions are usually very
computationally intensive. Therefore, accelerating the computation of these functions through ap-
proximation methods can greatly improve the training and inference efficiency of machine learning
algorithms while reducing resource consumption, which is more in line with the goal of environ-
mentally sustainable development.

1https://www.rabbit.tech/
2https://scipy.org/
3https://pypi.org/project/approxscimate/

1



3 Solution

To address the challenges above, we propose the development of a Python library containing proof-
of-concept functions that approximate statistical computations with the goal of making them more
energy efficient. ApproxSciMate would focus on providing efficient approximations to popular sta-
tistical functions currently found in libraries like SciPy. By offering a tunable level of approxima-
tion, ApproxSciMate aims to balance computational efficiency with acceptable accuracy, catering
to a wide range of application requirements, and empowering the users to think about and choose
their level of impact on the environment.

3.1 Target Functions

The library will initially focus on approximating the following functions chosen for their widespread
use and computational intensity:

3.1.1 Cube Root Function

While not as used as the square root or other basic arithmetic operations, the cube root function is
widely used in the areas of computer graphics, signal compression algorithms, error detection and
correction, and cryptography. In our library, we aim to provide 2 additional levels of approximation
to this function based on Halley’s and Newton’s methods of root approximation.

3.1.2 Combination Function

The combination function, or nCk (read as ”n choose k”), calculates the number of ways to
arrange k items out of a set of n distinct items, where the order of selection does not matter. The
function curve increases exponentially with n and follows a quadratic curve for the k parameter. It
is widely used in the areas of bioinformatics, economics, and data analysis. Our implementation will
include 3 additional levels of approximation: a lower-bound guaranteed approximation, an upper-
bound guaranteed approximation, and an approximation using Stirling’s method of approximating
factorials.

3.1.3 Permutation Function

The permutation function calculates the number of ways to arrange k items out of a set of n
distinct items, where the order of selection does matter. It is a rapidly exponential function on
both n and k that has many use cases in network routing, cryptography, and algorithm design and
analysis. Our implementation of the permutation function includes 3 additional levels of approx-
imation: a lower-bound guaranteed approximation, an upper-bound guaranteed approximation,
and an approximation using Stirling’s method of approximating factorials.

4 Implementation details

For each of the functions mentioned in the Solutions section, we have implemented additional levels
of approximation on top of the existing SciPy ones. Each of the functions includes a level 0 which
represents the default, accurate SciPy version. We have opted to keep the SciPy version as default
to not mislead users who don’t read the documentation and are simply looking for accurate result.
The full implementation and documentation can be found here.

4.1 cbrt(n, level=0)

Level 1: Halley’s Method

Halley’s method is an iterative root-finding algorithm that improves upon Newton’s method by
incorporating the second derivative of the function. The iterative formula for Halley’s method to
approximate the cube root of a number xn is given by:

xn+1 =
xn ∗ xn

3 + 2 ∗ x
2 ∗ xn

3 + x

, where xn is the current approximation
Halley’s method offers faster convergence compared to Newton’s method by taking into ac-

count the second derivative of the function. This additional information accelerates the rate of

2

https://github.com/MissingCurlyBracket/ApproxSciMate


convergence towards the root, resulting in fewer iterations required to achieve the desired level of
accuracy. The rationale behind using Halley’s method lies in its superior convergence properties,
which make it suitable for moderately accurate cube root approximation.

Level 2: Newton’s Method

Newton’s method is a classic iterative root-finding algorithm commonly used for approximating
roots of equations. The iterative formula for Newton’s method to approximate the cube root of a
number xn is given by:

xn+1 = xn − xn
3 − x

3 ∗ xn
2

, where xn is the current approximation
Newton’s method provides a straightforward approach to root approximation by iteratively

refining an initial guess. While it may converge more slowly compared to Halley’s method, it still
offers a reliable means of approximation, particularly when computational resources are limited or
when only a low level of accuracy is required. The rationale for using Newton’s method lies in its
simplicity and ease of implementation, making it suitable for basic cube root approximation tasks.

4.2 comb(n, k, level=0)

The combination function has the following formula: n!
k!(n−k)!

Level 1: Lower Bound Approximation

For the lower bound formula, we implement Farhis [Farhi, 2007] equality that:

nk

kk
≤ n!

k!(n− k)!

The guaranteed lower bound approximation can be very useful in use cases where we are dealing
with very large values of n and k, for example in cryptography. Knowing that a certain encryption
length will have at least a certain number x of variations can help the user decide quickly whether
its viable to consider in the first place or not.

Level 2: Upper Bound Approximation

For the upper bound approximation, we have implemented Farhi’s equality:

n!

k!(n− k)!
≤ nk

k!

The upper bound calculation can be useful in fields such as algorithm design when determining
if the worst-case complexity of a sub-set generation or graph traversal is more than what the
domain requirements state. It can help remove options which have the potential of being too large
for the use case.

Level 3: Stirling’s method

Stirling’s [Robbins, 1955] method is used to approximate the factorials used in the combination

function. It proves that n! ∼
√
2πn

(
n
e

)n
as n tends to infinity. We implement it in the combination

function alongside mathematical constants rounded to integers as such:√
6n

(
n
3

)n√
6k

(
k
3

)n ∗max(1,

√
6(n− k)

(
n−k
3

)n−k
)

This level is intended to provide a fairly high level of accuracy while reducing the complexity
through the elimination of factorials.

4.3 perm(n, k, level=0)

The permutation function has the following formula: n!
(n−k)!

3



Level 1: Lower Bound Approximation

k! provides a gross underestimation, essentially calculating the permutations of k items within
themselves, ignoring the larger pool of n. This approximation might be used to quickly assess a
very conservative lower bound of permutations but lacks practical accuracy since it doesn’t consider
the total number of items n.

Level 2: Upper Bound Approximation

We use nk to estimate the permutations by considering each of the k selections to have all n
possibilities, which over-counts since it allows repetitions. It is useful as an upper bound, especially
when calculating probabilities where overestimations might be tolerable, but it’s not accurate for
exact counts due to the repetition issue.

Level 3: Stirling’s method

This uses an approximation of n! for large n based on Stirling’s approximation,
√

2πn
(
n
e

)n
, and

rounds the mathematical constants to the nearest integer. Stirling’s approximation is effective for
large n because it closely estimates the logarithmic growth of factorial functions. It might not be
accurate for smaller values of n or when n and k are close. The final formula becomes:√

6n
(
n
3

)n
max(1,

√
6(n− k)

(
n−k
3

)n−k
)

5 Validation

In this section, we will validate the implementation by using the function, and their varying levels,
in stress tests designed to mimic real-world use cases. We will be looking at result accuracy
and energy usage in particular, as these represent the potential use cases and the impact on
environmental sustainability.

The experiments were automated and run on an M1 Pro CPU with minimal background pro-
cesses and the same external variables.

5.1 Accuracy validation

We validate accuracy so we know that the functions can replace the original SciPy versions within
certain degrees of error according to the varying use cases.

Figure 1: Comparison of the cube root function on all levels of approximation. We can observe
that level 2 diverges from the SciPy version at a factor of 10 earlier than level 1.

4



cbrt()

The cube root approximation functions follow the SciPy level of accuracy until certain thresholds,
where the rounding of constants and number of iterations make them eventually diverge. As seen
in Figure 1, Newton’s method (level 2) starts diverging from 103, while Halley’s method (level
1) maintains accuracy for one more order of magnitude. Even though they both have the same
number of iterations, Halley’s method converges to a more accurate result faster.

comb()

The results for the combination function, seen in Figure 2, show that the upper bound approxi-
mation remains accurate for much longer than the lower bound. For values of k < n

2 it is a more
suitable approximation, but for anything greater it deviates greatly. This is due to the logarithmic
nature of the approximation and is something which does not affect the lower bound function,
which is more suitable for the regions where k > n

2 .

Figure 2: Comparison of the combination function on all levels of approximation. Note: on the
logarithmic scale, levels 0 and 3 seem to overlap.

Though not visible in Figure 2, Sterling’s method proves to be extremely accurate, as it seem-
ingly overlaps the SciPy method. Only when looking closer, in Figure 3, can we see that it only
slightly over-shoots the value – albeit by approx. 2.5 ∗ 106.

Figure 3: Comparison between levels 0 and 3 of the combination function. We can see that
Stirling’s approximation deviates the most as the function reaches its peak; there, it overshoots by
approximately 2.5 ∗ 106.

5



perm()

The results for the permutation factor, seen in Figure 4 share similarities with the combination
function. The lower bound diverges much quicker than the upper bound in the region k < n

2 ,
making the latter more suitable for computations with that use case. Similarly to comb(), the
lower bound tends towards the actual value. The lower bound is a doubly symmetrical (or 180◦

rotated) curve with respect to the SciPy variant.
As for the implementation of Sterling’s method, it maintains accuracy to the actual value as well

as the comb() approximation. However, that is only until the results reach ∼ 108 (the maximum
value from the comb() result). Afterwards, it diverges until reaching k!, where it intersects the
lower bound approximation.

Figure 4: Comparison of the permutation function on all levels of approximation. We can observe
Stirling’s method (level 3) diverges from the accurate SciPy function rather greatly, as opposed to
the combination function.

5.2 Energy validation

Figure 5: The power usages of all functions on all their levels. The cbrt() function was on n =
range(1, 10, 000). comb() and perm were both run on n = range(1, 175) and k = range(1, n+ 1).
The plot consists of an average of 50 such runs.

6



Our solution to the identified problem in Section 1 states that the approximated functions
should be more energy efficient than their SciPy counterparts. To test this we have used the tool
EnergiBridge4 to compare the consumption of each level for each function.

For all functions, we have setup scripts to run them over multiple ranges and asses the execution
times and the energy consumption, used to calculate the power consumption. cbrt() was run with
input ranging from 1 to 10,000, while both comb() and perm() were run on n ranging from 1 to
175 and k ranging from 1 to n+1. Each run was repeated 50 times and their results were averaged
in Figure 5.

The results for the cube root function are unexpected. SciPy proves to be more energy efficient
than both of our approximation functions. It seems that iterative operations, such as the ones
in Halley’s and Newton’s methods are more demanding on the system than the implementation
which SciPy uses.

On the other hand, the combination approximations show a much better energy efficiency than
the original version. As expected the lower bound is the most efficient as it is the most simple,
not using any factorials. These results imply that by far the largest contributing factor to these
functions’ energy consumption is the factorial. It would be interesting to delve deeper into further
approximations for n!.

Lastly, permutation approximations also display a better efficiency than the SciPy counterpart,
for many of the same reasons as the combination approximations. An unexpected result is that the
efficiency of the approximations is not as good as for comb(); especially Sterling’s method, which
is the same except one less k! approximation. This most likely indicates an error in test setup or
execution of either the comb() or the perm() tests (likely comb()), and is an obvious limitation.

6 Discussion

We have discovered that approximate computing can result in energy-efficient alternatives for
specific use cases. Although the cube root function approximation proved to consume more energy
than the default, more accurate variant, combinations and permutations can be approximated
efficiently.

For both combinations and permutations, upper-bound approximations tend to be more accu-
rate when k is smaller. Conversely, as k reaches n, lower bound approximations can be a useful tool
for getting moderately accurate results. Furthermore, approximating the factorial using Sterling’s
method showed the most promise for a wider range of applications, as it was relatively accurate
and significantly more energy efficient than the SciPy defaults.

It is important to note that even though our permutation approximations, for example, only
reduced power usage by 1W, and most uses of this computation only last a few fractions of a
second, the total energy usage can amount to a very large number in the long term and when con-
sidering the number of computations happening. In the technology industry, every small percentile
improvement amounts to a very large outcome given the sheer size of the industry.

7 Limitations and future work

The largest limitation of the project, we believe, is the lack of testing in a real-world environment
such as the ones described in Section 1. This is a limitation due mostly to time and the complexity
of projects that use these functions.

Another limitation is the fact that we could only conduct tests on the combination and permu-
tation functions up to n = 175. This is due to limits in the Python implementation of Sterling’s
method which uses 32-bit numbers.

Lastly, Pyplot introduced a limitation for the visualisation of the combination and permutation
results. Initially, we intended to visualise the results on 3-dimensional mesh grids of the functions,
such that the influence of both the n and k parameters can be observed. However, Pyplot does
not work with logarithmic scaling in 3d graphs and the results would be much harder to interpret.
Therefore, we compromised by only showcasing the results for n = 30 (although more values of n
were tested).

For future work, we would be interested in exploring better approximations of the cube root
function, to hopefully improve upon the efficiency. Additionally, the library can be extended
beyond its proof-of-concept intention to include more functions from SciPy (and other computing
libraries).

4https://github.com/tdurieux/energibridge

7



8 Conclusion

To conclude, the results have demonstrated that approximate computing can be used for mathe-
matical computation to reduce energy consumption when certain levels of accuracy are suitable.
The provided implementations of the SciPy functions act as a proof of concept for what is a much
larger endeavour: to educate the technology industry on the impacts of computation on their en-
ergy consumption, and in turn the environment; and to enable programmers to be aware of and
choose their required level of computational complexity. We hope that more developers implement
the paradigm of approximate computing within their libraries and projects going forward.

8



References

[Farhi, 2007] Farhi, B. (2007). Nontrivial lower bounds for the least common multiple of some
finite sequences of integers. Journal of Number Theory, 125(2):393–411.

[Robbins, 1955] Robbins, H. (1955). A remark on stirling’s formula. The American Mathematical
Monthly, 62(1):26–29.

9


	Problem
	Why we choose SciPy functions
	Solution
	Target Functions
	Cube Root Function
	Combination Function
	Permutation Function


	Implementation details
	cbrt(n, level=0)
	comb(n, k, level=0)
	perm(n, k, level=0)

	Validation
	Accuracy validation
	Energy validation

	Discussion
	Limitations and future work
	Conclusion

