
VS Code Power Measurement: A VS Code

Extension for Measuring Power Consumption

Ole Peder Brandtzæg Aaron van Diepen
Rolf Piepenbrink Jasper Teunissen

April 14, 2023

GitHub repository

1 Introduction

In recent years, more research has been dedicated to energy-aware software. A
crucial aspect of the development of such software is measuring energy con-
sumption, as a means to assess the degree of energy efficiency. Though, this is
not a trivial task. From a practical standpoint, measuring energy consumption
is inherently flaky. There are numerous variables, some of which are difficult
to control, that may influence the results. For instance, tasks running in the
background can affect the measured energy consumption.

Additionally, human factors play an important role in energy efficiency as
well. Firstly, the programmers who develop the software can impact the energy
efficiency depending on the code they write; inefficient code could result in
higher energy consumption. Secondly, the programmers have to be aware that
their actions affect the energy consumption of their software.

Without awareness, energy efficiency is unlikely to be actively taken into
account during the development process. It is simply not yet always part of the
thought process behind software development. Bad coding habits, for instance,
could contribute to lower efficiency.

To bridge this gap, we propose a solution that aims to achieve two main
goals: increase awareness of energy-aware software development, and increase
the accessibility of tools that enable programmers to incorporate energy effi-
ciency in the development process. More specifically, we are targeting software
developers who are interested in considering energy consumption in their de-
velopment cycle from within the IDE they use. The three concepts of our core
design enable us to create a tool that achieves this, namely accessibility, usabil-
ity and integration. This glues the perspective of our intended users and the
goals we aim to fulfil.

Given that software developers generally use an integrated development en-
vironment (IDE) to write code, and given that IDEs are extensible to meet a

1

https://github.com/VSCode-Power-Measurement/extension


developer’s needs, we argue that integrating an energy measurement tool in an
IDE is a suitable approach to achieve the goals of our envisioned solution.

2 Related Work

For our project, we are mainly interested in software-based power measuring
tools, or power meters, since we intend to publish it as an extension available
from an IDE. Measuring power consumption can be done in a variety of ways.
For instance, Intel’s RAPL (Running Average Power Limit) technology and
Nvidia GPU NVML are both capable of measuring the power consumption
of a machine. Though, while powerful, these tools miss some of the wanted
functionalities; solely using these tools does not allow one to measure the energy
consumption per process.

A few other tools have built upon these and improved their usability and
reliability. Prime examples of such tools are Scaphandre [3], PowerAPI [7] and
perf [6]. These are all tools that allow for real-time power measuring with a
software-based approach and can make use of the RAPL interface. In short,
Scaphandre runs as a daemon on a given system and allows for obtaining the
approximate power consumption per individual process in real time and makes
this data available through various exporters, among them printing to standard
output, emitting JSON and exposing a Prometheus endpoint. PowerAPI works
similarly and allows for the data to be stored in a variety of databases and
file formats. perf, on the other hand, is a Linux command offering fine-grained
access to the kernel’s perf events interface. They are all open source under
lenient licenses.

Conveniently, Jay et al. [5] have performed an extensive comparison between
these three. They found that the tools are fairly similar in terms of function-
alities and capabilities. We conclude that the most significant differences lie in
user-friendliness. Since we want to be able to create a plug-in for an IDE, we are
interested in the extensibility and ease of use. Of the three Scaphandre seems to
be the best fit; it’s actively developed and offers a per-process breakdown of the
system’s power consumption, which is beneficial for our usecase, i.e. measuring
a specific program.

3 Solution

We have created a tool that enables software developers to measure and analyse
the energy consumption of the software they write, all integrated in a single IDE.
Our solution is intended to be integrated into the standard software development
cycle. Since the developers themselves are the ones who are targeted with
our tool, we have to create a tool that fits their needs. We derive a set of
requirements our solution has to adhere to in order to achieve our main goals.

Requirements

2



• Measure the power consumption of the code run from an IDE.

• Allow for real-time energy consumption analysis.

• Communicate the obtained measurements to the user visually.

• Be accessible from and/or integrated within an IDE.

• Be free and open source.

• Have a low barrier of entry.

We are immediately presented with a set of practical questions. How do we
measure energy consumption? And, which IDE should we choose? The answer
to the first question is Scaphandre. This covers one of the main limitations we
expected to face, namely that energy measurements often only provide informa-
tion of the entire system and is strongly influenced by numerous variables, such
as background tasks running during the measurement process.

The question regarding the choice of IDE can be answered in a quite straight-
forward manner. Since we want our tool to be free and open source, we deem
this to be important qualities of the IDE we choose as well. Though, since we
also want this tool to be widely available, we have to consider the popularity
of the IDE as well. Users are unlikely to switch IDEs solely for the existence of
our tool. Therefore, our eyes fell on Visual Studio Code (VS Code). VS Code
is open source and free to use. Besides that, it has a sufficiently large user base
and allows for easy extensibility.

With these two answers in mind, a closer look can be taken at the require-
ments. It becomes clear that our philosophy should revolve around three con-
cepts: accessibility, usability and integration. Accessibility refers to the concept
of ease of access. That is, it should not require much set and the barrier of entry
should thus be low. Furthermore, the tool should work in several use cases and
should not require the user to meet very specific conditions. Though, we do set
a couple of boundaries and optimise our tool within said boundaries, to narrow
the scope and make this project more manageable. The scope will be explained
later on in this section.

Usability describes the way we mean to empower users with relative ease.
The tool’s functionalities and usage should be familiar to the user. We interpret
this as the tool having a vast set of features that allow the user to actively
consider and analyse the energy consumption of the software they write. For
example, through the use of various graphs and figures, we communicate the
results of the measurements to the user and enable them to act upon it.

Finally, integration is also one of the three main pillars of our tool. While
related to the other two, special attention has been given to this component.
Concretely, since the tool is integrated in VS Code, users only have to include
the extension in their workspace. Furthermore, we want our tool to seamlessly
blend in with the environment, so that the controls and feel are familiar to the
user, thereby lowering the barrier of entry.

3



3.1 Scope

Given the context in which our tool is developed, we have to set certain pa-
rameters to define the scope. More specifically, the scope has been narrowed
such that a development time of three weeks is feasible, without forsaking the
core functionalities of the tool. Firstly, while it would be interesting to have a
more holistic comparison of energy consumption measurements, there are cer-
tain limitations that are difficult to circumvent. The same program run on
different machines, for example, will likely result in different readings. Rather
than having a wide scope with not fully fledged functionalities, we argue that
a narrower scope with more sophisticated features is more desirable, both from
the user’s perspective as well as ours. With this methodology, the tool can be
kept relatively simple and allows for maintaining a low level of entry. We thus
define the scope as local. The tool is run locally by the user from within their
IDE. This still enables the user to inspect the energy consumption and gives an
indication of where potential energy outliers may occur. Analysing the results
is therefor done locally as well.

Due to the limitations of power meters, comparing results from different
machines is not trivial. Implementing this would broaden the scope too much
in our opinion and make the tool too complex. Instead, the focus of our tool
lies with the progress of a local machine. Analysing the progress made with
regards to energy consumption reduction, we are convinced that providing a
local history of measurements suffices.

3.2 Implementation

As touched upon briefly, there are two main components in terms of implemen-
tation: measuring energy consumption and the VS Code plugin. These two
have to be interfaced, though, which was one of the challenges encountered in
the development of the tool. Scaphandre’s functionalities are ample. However,
porting them to an extension requires quite some work. This mostly relates to
the requirements of creating a VS Code plugin: the extension has to written in
TypeScript. Scaphandre is somewhat unstable in terms of creating bindings, so
we instead opted for calling commands from within the extension code.

The measurements are stored in a file in global storage, which is a folder
specifically dedicated to our extension and accessible to the extension at all
times. The path to said folder is specified in the VS Code context.

Regardless, obtaining the measurement data is only one part of the problem.
The second part is selecting the data corresponding to the task of running the
program of interest to the user. That is, software is run from within VS Code.
The energy measurements contain data of all tasks running on a machine, though
separated per tasks. If all data of all tasks were shown, the result would be a
convoluted and cluttered overview. To solve this issue, we make use of the
process ID (pid). Determining which pid belongs to the task of interest to the
user is not as straightforward, however. VS Code’s debug API does not expose
the pid of the process of interest. The pid is simply a numeric identifier with

4



no contextual information. Thus, since the tool itself cannot identify which
process to look for, due to this lack of context, the selection is left to the user.
To make this work with Scaphandre, we have extended its functionalities by
implementing a function that enables selecting a process’ energy consumption
based on the pid.

Next, once the data has been reduced to information relevant to the user,
the third step is to present the data. A graph can be generated and shown in
the IDE interface, where time and energy consumption are plotted. Note that
this is in real-time, with the option of regressive comparison.

Finally, another part of the solution is related to publishing the tool as
an extension, so it is available to others using VS Code. This process, while
relatively simple, is not to be overlooked, since our tool would be ineffective at
achieving our goals if it were not publicly usable. In VS Code, our tool can be
found as usual, or by searching with by its ID: vscode-power-measurement.power-
measurement.

4 Design Choices

In terms of design, we decided to focus on seamless integration. We argue that
the barrier of entry can be kept low by simulating, or mimicking, a style that
is familiar to the user. Since they use VS Code, the controls for our tool are
similar to those for debugging or running a piece of code, a basic procedure
assumed to be known by the user.

Figure 1: The Power Measurement extension as seen in the Visual Studio Code
extension tab

First, the extension can be included by a user in VS Code with the standard
procedure as seen in Fig.1. Once included, the tool can be run inside VS Code
by clicking the lighting bolt icon to open the view created by the extension.

5



While the tool is running, the user can start their program of interest for a
given amount of time by pressing the familiar ’run’ button in the title bar of
the measurement view. Stopping can be done in a similar fashion, using the
’stop’ button. The user can also toggle automatic starting and stopping by
clicking the locked/unlocked lock icon to hook/unhook from the debug start
and stop event. The data, grouped per process, is ready to be processed and
visualised. When the extension begins measuring, the extension presents a list
of running processes to the user, searchable by PID and process name. Here
the user selects the process they want to measure power consumption of. This
can not be automated due to limitations with the VS Code API, as further
described in section 6.

Since the tool requires reading certain kernel files, the user is required to
have root access. More about this can be found in the Limitations 6 section.
To streamline the setup as much as possible, we show the user what needs to
be done in an error message, and provide the option to fix it automatically (see
Fig.2a). When clicking the option to fix it automatically, we use sudo to gain
root privileges, required for gaining read access to the power information files.
To not scare the user too much, we integrated this request, with an explanation,
using a native VS Code prompt as seen in Fig.2b. The group of the necessary
files is changed to the current user, and read access is given to the group. This
ensures that we ask for the user’s password only on the first run after system
boot, minimizing the impact on the usability of the extension.

(a) Error message explaining what needs
to be done

(b) sudo password prompt, with explana-
tion

Figure 2: Error message shown when the extension has no read access to the
necessary files, with the automatic fix UX provided as an option.

Next, the graphical overview presents the data per process in real time, as
shown in Fig.3. Once the user has selected the process of interest, the data is
plotted in a graph using ChartJS, an easy to integrate graphing library made
for JavaScript environments. The x-axis represents the time since starting the
measurements (in seconds) and the y-axis shows the power consumption (in
Watts). Each machine may have a differing range of power consumption, and
execution time may vary. Therefore, the axes are dynamic and adapt to the
data, updating the axes to accommodate said range.

In addition, several features have been implemented to aid the user’s analysis
of energy consumption. After a user presses the stop button the measurement

6

https://www.chartjs.org/


Figure 3: Graphical overview of energy consumption over time. Obtained by
running the Fibonacci sequence.

is saved on disk using the persistent storage offered by the Visual Studio Code
extension api. By clicking on the previous measurement in the overview sec-
tion a user can open previous measurements in an integrated view. Multiple
of these views can be opened such that a user can compare previous measure-
ments side-by-side, as visualised in Fig. 4. To make it easy for a user to find
the measurement that they wish to open the overview section uses a combina-
tion of the process name, start time, average power consumption and maximum
power consumption, allowing the user to quickly identify the important mea-
surements. A user can also clear the persistent storage by pressing the clear
measurements overview, or delete specific measurements by clicking the delete
button on individual measurements. With this approach, we believe the data
to be communicated to the user adequately.

5 Evaluation

As mentioned, there are two main goal we want to achieve: increasing awareness
of energy-aware software development, and increasing the accessibility of tools
that enable programmers to incorporate energy efficiency in the development
process. We have also described a set of requirements, as stated in the Solution
section 3. To determine the extent to which these goals have been achieved
and whether the requirement have been met, we have evaluated our tool in a
realistic context.

The first requirement is full-filled, our tool is capable of measuring and com-
municating power measurements from within VS Code. The results are updated
in real-time and can be analysed and compared. Second, by focusing on seam-

7



Figure 4: Comparison of graphs

less integration, our tool makes use of functionalities that are already familiar
to the user. By being published in the extension store and being coherent with
the overall visual appearance of visual studio code and its already existing li-
brary of extensions, the barrier of entry is kept sufficiently low. However, due to
limitations of the VS Code extension API, the user has to manually select the
process of interest from a list of running processes. This assumes the user knows
process is the one they started. Furthermore, by default Linux restricts read
access to the power information files to the root user, requiring the user to have
root access. These limitations, further explained in the limitations section, can
be considered factors that do form a barrier of entry. Although as explained
these were inevitable choices, therefore we argue that the barrier of entry is
kept as small as possible. Third, our code base is free and open source, under
an permissive MIT license. This increases the expandability and accessibility
of our tool, which is conducive to achieving one of our goals. Fourth, the ex-
tent to which we increase awareness is subjective. Though, with the numerous
features provided by our tool, becoming more aware of energy consumption of
the software one creates has become easier. Only a few steps are required to
use our tool, making the integration into one’s software development cycle less
impeding. While the power measurements of our tool have a slight margin of
error, as we employ a software-based approach, it still provides an indication of
the overall consumption.

6 Limitations

There are a number of challenges in measuring power consumption, including
the accuracy of the measurements, the influence of background activities, and

8



the variability of power consumption over time. Scaphandre mitigates some of
the identified issues by combining CPU timings of the kernel and system power
consumption measurements to get an estimate of per process power consump-
tion. Nonetheless, our approach has some unresolved limitations.

Firstly, Scaphandre is not perfectly accurate. The CPU timings of the kernel
and system power consumption measurements are not always in sync. Depend-
ing on the CPU instructions used, some workloads consume more power within
the same time than others. This can lead to errors in the estimated power
consumption. Additionally, Scaphandre does not take into account the power
consumption of other hardware components, such as the GPU and memory.

Secondly, background activities influence the efficiency of the system, and
thus the power consumption of the measured process. When a program is run-
ning in the background, it can use up CPU time and memory, which can force
the CPU to enter a higher power state. Higher power states enable higher per-
formance, but come at the cost of efficiency. This can lead to an increase in the
power consumption of the measured process. Additionally, developers usually
run a lot of background activities. Visual Studio Code itself uses quite some
CPU, and many developers run a browser in the background. This increases
the risk of the CPU running in too high power states, which can be misleading.

Another limitation concerns the required authority to run our tool. In order
to start obtaining the measurements, the extension needs root access in order to
make the necessary kernel files readable to the current user, using Scaphandre’s
supplied initialization script. This is only required the first time measurements
are made, but the changes do not persist across reboots, as these are not regular
files, but rather kernel interfaces. As this is a security feature of the kernel, [4]
it is impossible to avoid this step, so we tried to make this as easy as possible
for the user. Since the IDE is generally not opened with root access, as this
is not expected to be necessary (and a bad idea, as it can run arbitrary code),
the extension first determines whether it has access to the necessary files and, if
not, the user is prompted with a password request when they run the extension.

Furthermore, while Scaphandre has wide support, not all machines are com-
patible. Its RAPL sensor requires the kernel to be of version 5.11 or higher for
AMDx86 machines [1]. Relying on RAPL also means that Scaphandre, and thus
our extension, only supports x86 machines running Linux. Compiling Scaphan-
dre on Windows is still considered experimental [2], effectively making Windows
support out of scope for this project.

In terms of power measurement, an inherent limitation imposed by the VS
Code debug API is that the PID of the program run from the IDE is not exposed
by the debuggers. This means that the exact start time cannot be known by
our tool. As a consequence, the maximum power is not shown in the graphical
overview of the data, as this would be inaccurate.

Another small limitation is that the start button for starting a measurement
might be hard to find since hovering over a webview-based panel inside visual
code does not display the buttons located in the title bar of the panel, this issue
has already been posted many times as can be seen on the issue Webview views
do not persist view actions on hover

9

https://github.com/microsoft/vscode/issues/109030
https://github.com/microsoft/vscode/issues/109030


6.1 Scope Limitations

The scope of our project is limited to providing individual developers with
insight into the energy consumption of the software they have developed. We
believe that this is important because it will allow developers to identify areas
where their software can be improved to reduce energy consumption. We do
not intend to provide comparisons of measurements made on different systems
or with much older measurements. This is because the results of such different
measurements can differ so much that comparisons of them become meaningless.

For example, the power consumption of a program can vary depending on
the hardware it is running on, the operating system it is running on, and the
specific configuration of the program. Additionally, the power consumption of a
program can change over time, even if the program itself does not change. This
is because the hardware, operating system, and the environment the system is
in all change over time and influence the power consumption and efficiency of
the system.

For these reasons, we believe that it is not meaningful to compare measure-
ments made on different systems or with much older measurements. Instead, we
believe that it is more meaningful to provide individual developers with insight
into the energy consumption of the software they have developed as they make
changes to it. This will allow them to identify areas where their software can
be improved to reduce energy consumption.

7 Conclusion

We have created a tool that measures energy consumption of the software
users write from within VS Code. By employing the functionalities provided
by Scaphandre, we obtain the energy consumption per process running on the
user’s machine. By simply including our tool as an extension in VS Code, the
user gets access to the energy consumption per process. They can then select
the process they are interested in. The tool will then show the data in a clear
graphical overview. This seamless integration and ease of use ensures a low bar-
rier of entry and thus makes it easier for the user to consider energy consumption
in their development cycle. Through these efforts, we aim to increase awareness
of the role energy consumption can have in the development of software.

References

[1] Hubblo. Compatibility. Accessed: 2023-04-14. url: https : //hubblo - org .
github.io/scaphandre-documentation/compatibility.html.

[2] Hubblo. Compilation for Windows (experimental). Accessed: 2023-04-12.
url: https://hubblo-org.github.io/scaphandre-documentation/tutorials/
compilation-windows.html.

10

https://hubblo-org.github.io/scaphandre-documentation/compatibility.html
https://hubblo-org.github.io/scaphandre-documentation/compatibility.html
https://hubblo-org.github.io/scaphandre-documentation/tutorials/compilation-windows.html
https://hubblo-org.github.io/scaphandre-documentation/tutorials/compilation-windows.html


[3] Hubblo. Scaphandre. Accessed: 2023-04-12. url: https : / / github . com /
hubblo-org/scaphandre.

[4] Ben Hutchings. [SECURITY] [DLA 2494-1] linux security update. Accessed:
2023-04-12. url: https://lists.debian.org/debian-lts-announce/2020/12/
msg00027.html.

[5] Mathilde Jay et al. “An experimental comparison of software-based power
meters: focus on CPU and GPU”. In: The 23rd IEEE/ACM international
symposium on cluster, cloud and internet computing. Accessed: 2023-04-12.
2023.

[6] Perf. Accessed: 2023-04-12. url: https://perf.wiki.kernel.org/index.php/
Main Page.

[7] PowerAPI. Accessed: 2023-04-12. url: https://powerapi.org/.

11

https://github.com/hubblo-org/scaphandre
https://github.com/hubblo-org/scaphandre
https://lists.debian.org/debian-lts-announce/2020/12/msg00027.html
https://lists.debian.org/debian-lts-announce/2020/12/msg00027.html
https://perf.wiki.kernel.org/index.php/Main_Page
https://perf.wiki.kernel.org/index.php/Main_Page
https://powerapi.org/

	Introduction
	Related Work
	Solution
	Scope
	Implementation

	Design Choices
	Evaluation
	Limitations
	Scope Limitations

	Conclusion

