
GATorch: An Energy-Aware PyTorch Extension

Group 6: Rover van der Noort,

March 2023

Abstract

GATorch is a tool seamlessly integrated with PyTorch that enables
ML developers to generate an energy consumption report. By attaching
your model, the tool automatically tracks the energy consumption of your
model’s training and generates graphs and plots to gain in-depth insights
into the energy consumption of your model.

1 Introduction

In today’s world, environmental challenges are a growing concern. Addressing
these challenges begins by increasing awareness of energy consumption. This
is especially relevant for the IT sector due to the increasing energy demand
[5]. Machine Learning (ML) algorithms are known to consume a considerable
amount of energy [4]. Although there has been a recent surge in sustainable
software research and tools to measure or reduce energy consumption [9], more
extensive research efforts are necessary. Large ML frameworks do not directly
integrate energy and carbon reporting tools, which means that developers are
required to rely on third-party tools. The available tools are often designed to
report the total energy consumption of the whole training loops, larger programs
or system-wide measurements. This means that with current tooling ML de-
velopers cannot easily identify energy-intensive parts of their models or specific
in-depth energy consumption information.

We propose GATorch, a new energy-aware PyTorch framework extension.
PyTorch is the most commonly used ML and Deep Learning (DL) tool and the
primary choice for research experiments. The tool performs low-level measure-
ments that provide in-depth information about the energy consumption of the
model’s training per layer. GATorch is seamlessly integrated with PyTorch and
generates a default report in Tensorboard that gives an ML developer direct
insight into the specific energy consumption of their model.

This extension is targeted at ML engineers and researchers who may not be
aware of the energy impact of their ML pipeline. This solution can create aware-
ness due to its seamless integration and more complex insights about the energy
consumption of their model to potentially reduce the model’s consumption. We
hope GATorch can encourage other developers and other ML frameworks to
implement their energy-aware functionalities or improve the proposed solution.

1



GATorch can contribute to reducing some of the emissions from ML develop-
ment by creating awareness in the field of AI for sustainable software engineering
about their actual consumption and providing insights for the developers on how
to intelligently reduce energy consumption.

We start discussing the related work in the field of Green AI and measuring
energy consumption. We then explain what functionality GATorch provides and
discuss relevant design choices. We then show the resulting implementation of
GATorch, followed by a discussion of its limitations and future work.

2 Related Work

There is increasing effort in raising awareness for best environmental practices
in [Green AI], such as loose estimators like [ML CO2 Impact][6] or static anal-
ysis plugins like [EcoCode]. Here, we present a more in-depth measuring tool
that seamlessly integrates with an existing ML framework. To understand the
architectural design choices we needed to make for our proposed solutions, we
investigated existing related work. This section briefly describes the existing
popular ML frameworks and the different types of energy consumption mea-
surement tools it can use. Finally, we identified a gap in the current methods.

Many ML frameworks exist today, but PyTorch is arguably the [most com-
monly used]. [PyTorch 2.0] was recently released and introduces module hooks
that allow for code injection into the different layers and passes of a user’s
model. TensorFlow is a direct competitor but does not offer the same func-
tionality, which increases the difficulty of integrating an energy consumption
measurement tool. scikit-learn is smaller and somewhat different but still does
not offer the same extensibility as Pytorch.

There also exist several energy consumption measuring applications, but
most rely on the same features such as using Intel’s RAPL and NVIDIA’s NVML
for their data. Firstly, [CodeCarbon] is a complete application for measuring
applications with longer run times and provides a large dashboard with much
information about the overall consumption. [Eco2AI] provides similar measure-
ments and estimates its equivalent carbon emissions and saves this data to a
file [2]. [Carbontracker] is specifically designed for tracking and predicting the
energy consumption of the training of deep learning models and can measure the
consumption per epoch [1]. This permits the plotting of energy usage in relation
to the loss value. However, this has not yet been implemented, and each of the
beforementioned measuring applications introduces a large time overhead when
starting or stopping measurements and can therefore not be used for smaller
measurements. [PyJoules] is simply a small wrapper around RAPL and NVML,
which means this application can be used for smaller measurements [7].

We identified in this related work that the current efforts into Green AI are
small-scale and generalising. Most energy consumption measuring applications
work on a system or complete training level. The current research is missing an
application that can identify energy consumption measurements more in-depth
by looking at individual system components and model elements, such as data

2



loaders, utility functions, and individual layers and passes. It needs to be seam-
lessly integrated with existing ML frameworks and present the measurements
in effective ways, which allows ML developers more insight into their energy
consumption (over time) and reduces possible wasteful practices.

3 Methodology

GATorch can provide more in-depth measurements than most other tools for
ML model training. In this section, we present how GATorch works. We explain
how we implemented our solution, explain the possibilities of GATorch and the
reasoning behind our design decisions.

GATorch utilizes hooks to add measuring functionality to the PyTorch li-
brary. PyTorch offers two types of hooks, the forward and backward, which
respectively execute on the forward and backward passes of the model. The en-
ergy consumption is measured per individual pass call and layer, and the data is
stored separately. The separation of this data allows the user to get an in-depth
insight into the energy consumption of the entire process.

On top of that GATorch provides the user with the ability to choose be-
tween multiple energy profilers. Currently, the library only provides support for
PyJoules, because of the large overhead of any other measuring library, but it
can be easily extended to add support for other energy profilers.

Lastly, the library’s main goal is to inform ML developers of the energy
consumption of their model’s training. GATorch does this by showing rele-
vant visualisations and aggregated scores in a dashboard. GATorch exports
the graphs and aggregations to [Tensorboard], which is a commonly used vi-
sualisation dashboard for ML workflows. We chose this tool as ML developers
might already use it for plotting other metrics of their models and this would
then seamlessly integrate with those metrics to give them a complete overview.
GATorch provides these plots separately too, allowing users to tweak them or
use them in any other dashboard configuration.

There are various ways to graph the collected data. By measuring the passes
and layers individually, we can generate plots that show their relative impact.
This allows the user to gain insight into the relative energy consumption per
layer and make choices with that information. Another plot GATorch generates
is the energy consumption compared to the loss value. This could indicate to a
developer that the model at a certain point does not gain as much performance,
while continuously using energy. Lastly, for completeness GATorch displays an
overall power consumption value.

4 Results

Our project is publicly available on [GitHub] under the ¡LICENCE¿. ML de-
velopers are invited to use the tool and provide contributions. To show the
effectiveness of GATorch, we ran an exploratory experiment on a Ubuntu 22.04

3



machine with an NVIDIA RTX 3080, 5th gen Intel CPU and 16GB of RAM on
the [FashionMINST] PyTorch tutorial with 100 epochs (ran approximately 30
min). We briefly analyse the generated results.

In Figure 1, we show the default Tensorboard graphs that GATorch gener-
ates. The first graphs show the average loss per epoch followed by the average
energy consumed per unit of loss. We observe that due to the decrease in loss
per epoch due to staggering performance improvements in the later stages of
training, the energy consumed per loss unit therefore increases.

Figure 2 shows the total energy consumed per pass, which is additionally
separated into the energy consumption per forward and backward pass, which
allows developers to distinguish between layers. For this experiment, we observe
that even though the expected energy consumption per pass should remain
constant, we can see fluctuations even in the fully smoothed lines. This indicates
that the energy measurements are probably influenced by other background
processes, however, it does show possible trends and relative comparison for the
user.

(a) Average loss in Joules per epoch
without smoothing.

(b) Average energy consumed per unit
of loss without smoothing.

Figure 1: Loss vs energy consumption graphs.

(a) Total energy
consumed per pass.

(b) Energy consumed on
the forward pass.

(c) Energy consumed on
the backward pass.

Figure 2: Energy consumption per pass and layer with full smoothing.

4



Figure 3 shows one of the remaining graphs that GATorch can generate,
which developers can manually integrate with any preferred platform. This
violin plot can support the developer in critical thinking about the used model
architecture relative to the energy consumption. Lastly, our tool can show the
total energy consumption of the experiment.

(a) Violinplot of the energy
consumption of the individual layers,

full network, and loss function.
(b) Total energy consumption of

current experiment.

Figure 3: Total energy consumption graphs.

5 Discussion

GATorch does not include all features that could increase the potential of this
tool. In this section, we discuss the identified limitations of the proposed solution
and future work recommendations.

5.1 Limitations

Although the primary goal is to present effective energy consumption informa-
tion to developers to improve insights into Green AI initiatives. A primary
concern for any sustainable software engineering project is its own environmen-
tal impact. This project adds additional processes to the ML development cycle
and should not have a significant impact on performance and energy consump-
tion. For example, we identified a significant performance drop while using
tools other than PyJoules such as CodeCarbon, which seems to be an inherent
architectural problem as it is not designed for single-function measurements.

At the time this paper was written, [PyTorch 2.0.0] had just been released,
which introduced the built-in backward pre-hook. This allowed the solution to
independently measure the forward and backward passes of each layer. Cur-
rently, layers with the same name are aggregated, while similarly named layers
could still vary in individual energy consumption, therefore it might be worth
plotting these separately. Likewise, the current implementation does not dis-
tinguish its measurements between system components, which means the user

5



does not learn any of this in-depth information. For instance, the various depen-
dencies for energy consumption measurement libraries per system components
could limit the accuracy of the overall results.

Furthermore the results obtained indicated that during training a model
consumes the most energy at the start and seems to drop in its consumption
towards the end of training. Since a more stable energy use was expected,
future work might investigate this behaviour further in order to understand if it
is determined by how PyTorch is implemented or if it generalizes to all models
trained under specific systems.

As mentioned before, [PyTorch 2.0.0] is a recent release and it may take
some time before every ML developer upgrades to this version. GATorch relies
on functionality released in this version and is therefore not compatible with
older versions of PyTorch.

5.2 Future work

The final goal of the project is to provide a more detailed and accurate represen-
tation of the energy consumption of the complete process of developing an ML
project. Ideally, the tool can measure each part of the ML development pro-
cesses, such as data loaders and pre-processors, separately. This would require
further development of the project, including adding the hooks in PyTorch for
the other functionalities in this project.

Additionally, the fact that each measurement tool had a different impact on
the performance was detected during this project, however, it was not further
investigated. We recommend further research into the impact of different energy
measurement tools against a baseline PyTorch project.

Not only does an integrated energy reporting tool, like GATorch, raise aware-
ness but it can also be used to create intelligent energy-aware training pipelines.
The gathered data can be used to provide the developer with suggestions for
better Green AI practices. This allows developers or tools to make decisions
that reduce energy consumption. This could be done by providing automatic
action points to the user based on the measured data that could reduce energy
consumption by following the [Green AI best practices]. For example, it can be
used to remove a layer that uses a higher-than-usual amount of energy, while
the accuracy improvement gained by it is negligible. Alternatively, it would be
possible to define an earlier stopping point, in case the gained performance is
no longer worth the extra energy investment.

Additionally, it would also be possible to adjust the hyper-parameters based
on the energy consumption measurements. The configuration of the hyper-
parameters can have a big effect on the total energy consumption [3, 8]. The
results from existing research [8] could be used to create suggestions for the ad-
justments that could reduce energy consumption. However, the actual effects of
the hyper-parameter may differ per model and task. More research on the topic
is required to discover whether these patterns persist throughout multiple dif-
ferent models and tasks. A more robust method to adjust the hyper-parameters
would be to use Bayesian optimisation in search of the optimal configuration

6



[8]. However, this process on its own requires energy and should only be used
in cases where the optimal configuration would save more energy than the cost
of finding it.

6 Conclusion

ML models can use enormous amounts of energy and GATorch is an extension
of PyTorch that can run a detailed measurement of the training pipeline and
provide an insightful overview of the consumed energy per layer and pass. This
allows developers to gain actionable information about the energy consumption
of their model and improve awareness of sustainable software engineering goals.

In conclusion, GATorch addresses the previously discussed problem, which
is the lack of visibility that ML developers have into the energy consumption
of their models. Although it may still not provide the full breakdown of the
pipeline, GATorch offers a more profound insight into the ML pipeline than any
other tool.

Ultimately, we believe that GATorch is a step in the direction of more sus-
tainable ML practices. In its current state, it can raise awareness of energy con-
sumption. Moreover, we believe that future research and development can lead
to a decision-making tool aimed at automatically reducing energy consumption.

References

[1] Lasse F. Wolff Anthony, Benjamin Kanding, and Raghavendra Selvan. Car-
bontracker: Tracking and predicting the carbon footprint of training deep
learning models. ICML Workshop on Challenges in Deploying and monitor-
ing Machine Learning Systems, July 2020. arXiv:2007.03051.

[2] SA Budennyy, VD Lazarev, NN Zakharenko, AN Korovin, OA Plosskaya,
DV Dimitrov, VS Akhripkin, IV Pavlov, IV Oseledets, IS Barsola, et al.
Eco2ai: carbon emissions tracking of machine learning models as the first
step towards sustainable ai. In Doklady Mathematics, pages 1–11. Springer,
2023.

[3] Hasan Farooq, Julien Forgeat, Shruti Bothe, Maxime Bouton, and Per Karls-
son. Edge-distributed coordinated hyper-parameter search for energy saving
son use-case. In 2022 IEEE International Conference on Communications
Workshops (ICC Workshops), pages 421–426, 2022.

[4] Eva Garćıa-Mart́ın, Crefeda Faviola Rodrigues, Graham Riley, and H̊akan
Grahn. Estimation of energy consumption in machine learning. Journal of
Parallel and Distributed Computing, 134:75–88, 2019.

[5] Anasuya Haldar and Narayan Sethi. Environmental effects of information
and communication technology - exploring the roles of renewable energy,

7



innovation, trade and financial development. Renewable and Sustainable
Energy Reviews, 153:111754, 2022.

[6] Alexandre Lacoste, Alexandra Luccioni, Victor Schmidt, and Thomas Dan-
dres. Quantifying the carbon emissions of machine learning, 2019.

[7] Mohammed chakib Belgaid. Pyjoules: Python library that measures python
code snippets.

[8] Lucas Høyberg Puvis de Chavannes, Mads Guldborg Kjeldgaard Kongsbak,
Timmie Rantzau, and Leon Derczynski. Hyperparameter power impact in
transformer language model training. In Proceedings of the Second Workshop
on Simple and Efficient Natural Language Processing, pages 96–118, Virtual,
November 2021. Association for Computational Linguistics.

[9] Tien-Ju Yang, Yu-Hsin Chen, Joel Emer, and Vivienne Sze. A method
to estimate the energy consumption of deep neural networks. In 2017 51st
Asilomar Conference on Signals, Systems, and Computers, pages 1916–1920,
2017.

[?1] PowerAPI: A Software Library to Monitor the Energy Consumed at the
Process-Level: A. Bourdon, A. Noureddine, R. Rouvoy, L. Seinturier. ERCIM
News, Special Theme: Smart Energy Systems, 92, pp.43-44. ERCIM, 2013.

8


